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ABSTRACT 

 

Uncrewed Aerial Vehicles (UAVs) are becoming a popular data acquisition tool for animal 
detection and monitoring in conservation management. Advances in the sensory capabilities 
of UAV platforms are driving customised detection models which have specific data 
requirements. UAV-based monitoring of ungulates is relatively new and has undergone 
limited research on the application of this method, its shortcomings and the effect on species 
and the environment compared to more traditional, well research and established monitoring 
methods. Therefore, the limited research justifies the focus of this research field and the 
contribution to the development of generalised best practices that focus on data acquisition 
standardisation traded off against minimised environmental disturbance.   
This thesis had three main goals.  Firstly, I aimed to provide an overview of recent UAV-based 
ungulate monitoring techniques including ethical considerations given to possible 
environmental disturbance. The gaps in these processes were identified and solutions were 
explored. Secondly, the semi-automated detection of reintroduced Arabian Oryx (O. leucoryx) 
was tested, using the spectral signature of the species’ coat as input for an object-based image 
analysis (OBIA) rule set to identify adult O. leucoryx, applied in UAV acquired imagery. Our 
method uses the lab-measured spectral reflection of hair sample values, collected from 
captive O. leucoryx as input for an OBIA ruleset to identify adult O. leucoryx from UAV survey 
imagery using semi-automated supervised classification. Using species spectral reflectance 
signature to identify re-introduced O. leucoryx and extract location data using a non-invasive 
UAV-based tool is a novel method with enormous application possibilities. Coat refection 
species-specific signatures can be developed for a range of species and customised to 
autodetect and classify the species from remote sensing data. Lastly, the zoometric and 
feature extraction of O. leucoryx data using data acquired from a captive population for 
comparison with reintroduced populations monitored by UAVs were assessed. Highly 
accurate scaled and geo-rectified imagery derived from UAV surveys allowed precise 
morphometric measurements of the oryx. The scaled top view imagery, combined with 
baseline data from known sex, age, weight, and pregnancy status of captive individuals were 
used to develop predictive models. A bracketed index developed from the predictive models 
showed high accuracy for predicting the age group ≤ 16 months, animals with a weight >80 
kg, and pregnancy. The pregnancy prediction decision tree model performed with a 91.7% 
accuracy. The polynomial weight predictive model performed well with relatively high 
accuracy when using the total top view surface measurement. The accuracy of the age 
prediction model reduces as the age of the animal exceeds 16 months. Photogrammetrically 
processed UAV acquired imagery can yield valuable zoometric data, feature extraction and 
modelling. It is a tool with a practical application for field biologists that can assist in the 
decision-making process for species conservation management.   
 

 

Keywords: Aerial imagery; Antelope conservation; Drone; Large mammal monitoring; 

Photogrammetry; Wildlife management; Zoometric measurements 
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1. Introduction 
 
Uncrewed Aerial Vehicles (UAVs) or commonly referred to as Drones have become an attractive 
tool for conservation and wildlife managers. The reasons may include an unprecedented 
progress in technologies development in the last decade and the rapid growth in the market with 
UAVs, becoming more affordable and more user-friendly. UAVs are equipped with high-
resolution cameras that are capable of generating large volume of data that requires significant 
computing power to analyse to provide information for decision-making processes in species and 
environmental management. 

Surveying species to obtain accurate population estimates is a necessary but challenging task 
that requires a considerable investment of time and resources. Traditional ground-based 
monitoring techniques, such as camera traps and surveys performed on foot, are known to be 
resource-intensive, potentially inaccurate and imprecise, and difficult to validate (Gonzalez et al. 
2016). For conservation purposes, it is important to collect consistent and reliable information 
about species distribution and diversity to develop plans for species protection and sustainable 
use (Riede 2000). Remote sensing is generally regarded to be able to contribute to this aim, 
mainly by its ability to provide continuous spatial information (Leyequien et al. 2007). Recent 
developments in UAVs have great promise as a scientific monitoring tool nevertheless only when 
combined with appropriate sensors, established sampling protocols, and statistical analysis 
(JONES IV et al. 2006). The rapid growth in the use of UAV imagery for environmental monitoring 
(Laliberte et al. 2010; Gonzalez et al. 2016; Rey et al. 2017) and the availability of off-the-shelf 
UAV units, make this an attractive option for environmental researchers. Researchers face a 
trade-off between the performance of the materials, the logistics and the investment, which 
explains why mainly small UASs are used (Linchant et al. 2015c). A range of options, techniques 
and settings are reviewed in real-world scenarios to give the environmental researcher, 
responsible for large mammal monitoring, a reference guide for the best application.  

UAV’s environmental monitoring adoption by the conservation sector has lagged behind the 
resources sector, such that many technological possibilities remain untapped. Applying low-
altitude aerial imagery to conservation requires the merging of three skill sets: ecological 
knowledge, operating of UAV hardware, and data interpretation (De Kock & Gallacher 2016).  

Ungulates, and their population demographics in particular, are often good indicators of 
ecosystem function (McMahon et al. 2021; Ito et al. 2022). They are a good target animal group 
for UAV-based monitoring as they are easily identified, can be counted using automated 
methods and respond predictably to environmental change (Zhou et al. 2021; Rahman et al. 
2022). 

Researchers are confronted with a range of questions in the development of an applied 
methodology where UAVs are used; this can include the appropriate altitude, the use of video or 
photographs, direct piloting or programmed piloting; to name a few. Selecting the incorrect 
application may result in the loss of data quality or unusable data. The UAV's applied 
methodology is typically tailored to the research and monitoring question. The thesis focuses on 
off-the-shelf UAVs, single and multi-router units and in some commonly used, third-party 
accessories and software additions.  
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1.1. Aims of the thesis 
 
This thesis aimed to provide insight into the detection processes of large ungulates in the arid 
regions of the Middle East and Africa by using UAV-acquired imagery and computer-based 
analysis for semi- and automated detection and feature extraction. The thesis aimed to 
investigate this topic as subdivided into the following main themes: 

 
1) Provide an overview of the current trends in UAV-based ungulate monitoring and the 

ethical aspects to be considered when deploying UAVs as a data capture tool.  
a. The first objective was to identify gaps in the standardisation of the methods 

through a systematic review which focused on the methods used, including the 
UAV platform and sensors, the flight plan, species of interest, and the type of data 
extracted. A specific focus was paid to a synthesis of ethical considerations before 
using UAV monitoring techniques that include disturbance of the target species' 
natural behaviour and the disturbance of secondary species as a result of UAV 
survey ‘bycatch’ which describes the environmental disturbance.  

b. The second objective was to contribute to the need for common approaches to 
guide the standardisation of methods and ethical considerations by reflecting on 
our research. Here, we summarised data from six years of UAV ungulate surveys 
in a conservation management capacity and presented a case study on one of the 
largest antelope species. Specifically, we tested the effect of height of a surveying 
UAV on the visual disturbance behaviour of the Western Derby eland 
(Taurotragus derbianus derbianus). We culminated this into a discussion about 
best practices and a summary of considerations to inform future practical 
applications of UAVs as a survey tool.  

2) Provide insight into the semi and automated detection of large ungulates using 
computing techniques, especially semi-automated detection using object-based 
image analysis (OBIA). 
a. The first objective was to investigate the application of animal coat spectral 

reflection to identify individual adult Arabian oryx (O. leucoryx) using lab-
measured reflectance of coat samples as an input for a semi-automated 
supervised classification using the colour values as an input for the OBIA ruleset.   

b. The conversion process of lab measured Commission Internationale de l'Eclairage 
(CIE) Lab colour values to a compatible digital computer-based colour (sRGB) 
environment was investigated. We tested the performance of the OBIA image 
extraction ruleset on a range of data sets acquired by UAV based image-capture 
survey of a protected area housing re-introduced O. leucoryx. 

3) Test the application of zoometric data extraction and modelling from UAV acquired 
imagery;  
a. The objective was to examine the accuracy of species-specific zoometric 

measurements acquired by a non-invasive extraction from photogrammetrically 
processed drone-based imagery.  

b. The second objective was to test the predictive value of UAV-acquired post-
processed imagery to classify the herd structure in terms of age groups, including 
offspring identification, sex, and pregnancy status of O. leucoryx (n=43) in a 
protected area with the purpose to assist in the decision-making process for 
conservation management of the species. 
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2. Literature review  
 

2.1 Uncrewed Aerial Vehicles  
 

Monitoring animals in their natural environment are of critical importance because of recognised 
global declines in biodiversity (Jewell 2013). The value of aerial surveys in wildlife monitoring is 
well known (Linchant et al. 2015b), while the cost, safety and logistics usually limit the use of 
manned aircraft in this field of monitoring free-living animals in their environment. In the early 
2000s, some of the first assessments on using UAVs with imagery capture equipment for use in 
wildlife monitoring and surveying were done (Jones IV et al. 2006). Since this time, the use of 
UAVs across a range of ecosystems and to address a variety of scientific objectives has increased. 
A larger range of species was surveyed using UAVs in a range of environments and sensor types 
(Watts et al. 2010; Anderson & Gaston 2013; Groom et al. 2013; Linchant et al. 2018b). UAV 
monitoring is not limited to the identification of species. Zoometric measurements, for instance, 
can reveal additional information about the species that may include insight into the species' age 
structure (de Kock et al. 2021b), growth rates (Christiansen et al. 2018), sex ratios, body condition 
(Krause et al. 2017) and behaviour (Torres et al. 2018).  
 
UAV technology has shown great potential as a scientific monitoring tool. According to Jones et 
al. (2006), however, only when combined with appropriate sensors, established sampling 
protocols, and statistical analysis will this technology be fully utilised. The rapid growth in the 
use of UAV-acquired imagery for environmental monitoring (Laliberte et al. 2010; Gonzalez et al. 
2016; Rey et al. 2017), and the availability of off-the-shelf UAV units, make UAV-based 
environmental monitoring an attractive option for researchers. UAV environmental monitoring 
adoption by the conservation sector has lagged behind the technology sector, such that many 
technological possibilities remain under-utilised. Applying low-altitude aerial imagery to 
conservation requires the merging of three skill sets: ecological knowledge, operating of UAV 
hardware, and data interpretation (De Kock & Gallacher 2016). 
 
2.1.1 Do UAV hardware and flight parameters matter?  
 
During the selection process of optimising the UAV capability for the best data acquisition system 
(Table 1), decisions must be made on the hardware (UAV and sensors) and applied methods to 
be used. These decisions are usually derived from the research question that dictates data 
standards, data type and resolution. Secondary factors include available finances, accessibility, 
availability of the UAV platform, area to be covered, site location, legal restrictions, operational 
requirements in the form of training needed and site-specific environmental conditions. Lastly, 
pre-flight and operational planning that, among others, include the ethical considerations for 
each flight operation.  
 
Therefore, we identified the diversity of approaches, the range and the most frequent values of 
individual technical parameters applied in the UAV-based monitoring of ungulates (Table 1). 
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Table 1: An overview of UAV platform, sensor and flight operation parameters and 
considerations 

Categories UAV flight setup considerations 

UAV Platforms Multi-Rotors Fixed Wings Vertical take-off 
and landing 
(VTOL) 

Custom 

UAV Size (Weight) 250g - 25000g 1000g - 25000g 1000g - 25000g 1000g -
>2500g 

Flight Time 
(approximate 
maximum flight time 
per battery) 

22 min - < 30 min 30 min  - 120 min  30 min  - 120 
min 

15 min  - 120 
min 

Sensors Imagery and Lidar Imagery and Lidar  Imagery, Lidar  
and Radio 
frequency 
equipment 
related to 
animal tracking 

Custom 

Type of flight Piloted: Visual 
line of sight 
Piloted: Beyond 
visual line of sight 
Piloted: First 
Person View 
Autonomised 
flights 

Piloted: Visual 
line of sight 
Piloted: Beyond 
visual line of sight 
Piloted: First 
Person View 
Autonomised 
flights 

Piloted: Visual 
line of sight 
Piloted: Beyond 
visual line of 
sight 
Piloted: First 
Person View 
Autonomised 
flights 

Piloted: Visual 
line of sight 
Piloted: 
Beyond visual 
line of sight 
Piloted: First 
Person View 
Autonomised 
flights 

Monitoring techniques  Targeted 
individuals 
Census or survey 
Combination 
flights 
Custom 

Targeted 
individuals 
Census or survey 
Combination 
flights 
Custom 

Targeted 
individuals 
Census or 
survey 
Combination 
flights 
Custom 

Targeted 
individuals 
Census or 
survey 
Combination 
flights 
Custom 

Species Single Target 
species 
Multiple species 
Environmental 
monitoring 

Single Target 
species 
Multiple species 
Environmental 
monitoring 

Single Target 
species 
Multiple species 
Environmental 
monitoring 

Single Target 
species 
Multiple 
species 
Environmental 
monitoring 

Flight considerations Launce distance Flight altitude Approach path Airspeed 

Ethical Considerations UAV disturbance 
during the flight  

UAV survey 
bycatch 

Environmental 
impact 

 

 
In this perspective, there is a requirement for synthesis on the factors that govern the influence 
of UAVs on ungulate behaviour to better inform the application of UAVs for ungulate research. 
Several case studies have demonstrated the effectiveness of the technique, but few make 
mention of the impact of the approach on the species under study. A review, therefore, needs 
to consider the impact on the target species, but also on the survey 'bycatch', taking into account 
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the effects on the entire ecosystem. The trends and best practices need to be identified so that 
the field ecologist has a holistic picture of the required considerations for UAV-based surveys. 

 

2.2 UAVs used for wildlife survey and monitoring 
 
Accurate population estimates and an understanding of the ecology and behaviour of animals 
are cornerstones for effective wildlife conservation and management. These can be obtained 
from species monitoring and surveys which are challenging tasks that require considerable 
investment of time and resources. Traditional ground-based monitoring techniques, such as 
camera traps and surveys performed on foot, are resource-intensive, demanding to design, 
potentially inaccurate and imprecise, and difficult to validate (Gonzalez & Johnson 2017). 
However, for conservation initiatives that rely on adaptive management, it is essential to collect 
consistent and reliable data about species distribution, demographics and diversity (Mulero-
Pazmany et al. 2015; Petso et al. 2021) to develop species protection and sustainable use 
strategies (Riede 2000). These required data can be reliably obtained from various remote 
sensing platforms (Leyequien et al. 2007), especially UAVs (Hodgson et al. 2016; Mangewa et al. 
2019). Their use for data collection inevitably translates to the quality of information and 
clarifying the methods and standardisation of technical parameters for data collection are 
important for wildlife management and conservation practitioners (Buters et al. 2019).  
 
The application of UAVs is rapidly advancing and proving its worth as a promising monitoring 
tool, with substantial reductions in size and increases in sensory capabilities and flight times 
(Allan et al. 2018). The use of UAV-based surveys in the conservation sector has lagged behind 
that of the commercial sector and many avenues remain where UAV-based approaches can aid 
in conservation efforts (Christie et al. 2016). First attempts at ecological UAV surveys used 
specialised, often custom-built UAVs, which required the consolidation of three skill sets: 
ecological knowledge, safely operating UAV hardware, and data processing and interpretation 
(De Kock & Gallacher 2016). Advances in automated flight software and UAV platform and 
software designs have closed the gap between UAV hardware, piloting and data acquisition 
specialisations, and even very low-cost UAVs can now easily be used for ecological mapping and 
monitoring (Myburgh et al. 2021). Rapid growth in the use of UAV imagery for environmental 
monitoring (Laliberte et al. 2010; Gonzalez et al. 2016; Rey et al. 2017) and the availability of off-
the-shelf UAV units, make this an attractive option for conservation-based species research and 
monitoring (Castellanos-Galindo et al. 2019; Mangewa et al. 2019). Researchers face a trade-off 
between the performance of the UAV and sensors, the logistics and the capital investment, which 
explains why mainly small UAVs are used in wildlife monitoring (Linchant et al. 2015c; Myburgh 
et al. 2021). Regardless of the size or price tag, UAVs functionally remain merely flying platforms 
unless combined with the appropriate sensors, sampling protocols and statistical analyses 
(JONES IV et al. 2006). 
 
Although multi-rotor UAV surveys are capable of covering areas of up to 2km2 on a single charge 
(Pradeep et al. 2018), fixed-winged UAVs are capable of covering areas at a large reserve scale 
within feasible time scales (>10km2) (Su et al. 2018). At these scales, entire populations of large 
body-sized mammals can be surveyed, depending on the species and environment. Ungulates 
are a good target animal group for UAV-based monitoring as they are easily identified, can be 
counted using automated methods and respond predictably to environmental change (Zhou et 
al. 2021; Rahman et al. 2022). 
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Flight plans for ungulate survey missions are planned for maximum detection of wildlife in their 
natural environment, often tailored to a species of interest. This requires a range of, inclusive of 
limiting the impact of the UAV on the species of interest (Andrews 2014; Linchant et al. 2015c; 
Hodgson & Koh 2016).  
 
Although UAVs present a considerably more capable platform for ungulate population research, 
disturbance and negative effects have been demonstrated and linked to UAV-based wildlife 
monitoring (Mulero-Pázmány et al. 2017). Disturbance in ungulates is usually identified as a 
physical reaction to the presence of the UAV that will ultimately manifest into a fight or flight 
response. The strength of the reaction depends on the perception of the risk, which naturally 
relates mostly, but not exclusively to a risk of predation. Potentially life-threatening situations 
for ungulates include the proximity to human settlements, hunting activities (Tarakini et al. 2014; 
Yamashita et al. 2018), tourism, i.e. visitors in their natural environment (Malo et al. 2011), or 
flying objects, such as helicopters in which the negative effect of such strong disturbance may 
persist long after the disturbance (Brambilla & Brivio 2018). Anthropogenic disturbances create 
trade-offs between avoiding perceived risk and other fitness-enhancing activities similarly to 
natural predator risk situations (Frid & Dill 2002; Stankowich 2008) and therefore should not be 
neglected in considerations. In regard to UAVs, research about effects of UAV disturbance is rare, 
for instance, research on bears showed UAVs to have a limited behavioural, but measurable 
physiological (stress) response (Ditmer et al. 2015). The research of the effects of UAV 
disturbance particularly on ungulates is largely insufficient (Mulero-Pázmány et al. 2017). 
Although here, disturbance is typically related to the species of interest, the UAV platform and 
the flight plan/characteristics.  In the public domain, popular video streaming platforms (e.g. 
YouTube) have been used to elucidate evidence of disturbance on a range of taxa as a result of 
UAV flights (Rebolo-Ifrán et al. 2019). However, in the context of using UAVs for ungulate 
research, this sort of data remains scattered throughout the literature, making it difficult for the 
field biologist to assess and interpret.  
 

2.3 UAV-acquired data processing 
 
Most data-processing in the context of this thesis refers to UAV-acquired imagery and embedded 
information that include sensor setting and GPS location data. Post-processing of these imagery 
datasets is computer-based. Firstly the use of photogrammetry software (Berteška & Ruzgienė 
2013) to stitch single images into a geo-rectified dataset. The secondly is semi- or automated 
object detection process using different types of software to analyse imagery data. This includes 
traditional Geographical Information System (GIS) based software and data classification tools 
(Dennis C. Duro 2012) and a relatively new method (LeCun et al. 2015) using custom computer 
learning algorithms (Gonzalez et al. 2016). 
 

2.3.1 Photogrammetry and drone imagery 
 

Photogrammetry data from drone imagery are becoming a popular tool for low altitude high-
resolution large-scale mapping tools (Colomina & Molina 2014). The ability to extract 
photogrammetry data from images needs an adequate overlap of images from the same area. 
Front and side overlap are necessary for photogrammetry software that utilise structure from 
motion (SfM) process to estimate the three-dimensional information from two-dimensional 
imagery data (Fabris & Pesci 2005), this process and location data from images make it possible 
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to extract scaled three-dimensional data of landscapes (Butler et al. 1998) and objects (Colomina 
& Molina 2014). Figure 1 shows overlapping images in sequence and resulting extraction of 3-
dimensional data. 

 

Figure 1: Overlapping images and the photogrammetry process to extract Digital Elevation 
Models (DEMs) 
 

2.3.2 Model species  
 

During the research and development process, it is common practice to select a species with a  

high success probability for a proof of concept. Because of the high visibility across a generally 

uniform environment. The O. leucoryx  are well represented and accessible in re-introduced and 

captive populations this highly visible was chosen as a model species. The UAV-generated 

imagery and data analysis focuses on the detection and feature extraction of the O. leucoryx. 

However, a range of detection and feature extraction methods was used on a range of large 

ungulates in different habitats to test these hypophyses. 

 

Species monitoring is essential for conservation-based population management (Riede 2000). 

Following successful breeding internationally and within the range states of the O. leucoryx, the 

pressure to change from captive to semi and fully free-living population as efforts increased to 

restore the historical distribution of the species.  The first reintroduction of the ‘world herd’ 

occurred in Oman in 1982 followed by additional re-enforcement of this re-introduced herd 

(Spalton et al. 1999). 

 

Historically, during post-release monitoring of O. leucoryx, the low-density distribution of these 

re-introduced animals results in a population size estimate with low accuracy (Zafar‐Ul Islam 

2011). Ground-based monitoring of O. leucoryx in a technical difficult desert terrain may have 

an additional negative impact on the low accuracy of population estimates (Islam 2008). Recent 

studies proved the use of UAVs to monitor the O. leucoryx can be a valuable tool for field 
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biologists (de Kock et al. 2021b).  Because of the large amount of imagery collected during a 

UAV survey the need arises for an automated process to identify the species of interest 

(Corcoran et al. 2021).  

 

2.3.3 Imagery data extraction 
 

The relatively new concept of using geotagged imagery as a primary source of data for wildlife 
monitoring presents a range of questions in this field (Leyequien et al. 2007; De Kock 2015). 
Firstly, data processing to images with accurate location data, filtering a large amount of data 
and data extraction (Cai & Liu 2013; Rey et al. 2017). Adoption of technology requires broad 
expertise in ecology, drone hardware, and data interpretation, usually by a very small team or 
even an individual. Typically, an ecologist will first understand hardware, and only later develop 
the skills for interpretation (De Kock & Gallacher 2016). 
 
Data extraction can be done on raw images or processed loose-standing images to a unified 
single orthophoto mosaic data set. The analysis can follow a manual (Rey et al. 2017) or 
automated (Groom et al. 2013) process. The automated process usually consists of a supervised 
classification (De Kock 2015) or unsupervised classification (Singleton et al. 2010).  

Automated detection of wildlife from UAV-acquired imagery is dominated by the development 
of object detectors that are trained using convolutional neural networks (Kellenberger et al. 
2017) and other variations of computer learning (Zheng et al. 2021; Tuia et al. 2022). The 
development of computer-learned object detectors usually involves the labelling of the object of 
interest in a large number of images. These labelled objects are divided into test and train 
datasets that are used to train the detection model through computer learning software (Pathak 
et al. 2018). A large number of samples are needed to train the model efficiently. Low numbers 
of examples can be improved with data augmentation that can include mirroring, shifting and 
rotations. However, a low number of training examples can lead to overfitting (Kellenberger et 
al. 2017). 
 
An alternative when a large amount of imagery is not available of the species of interest to 
affectively train an object detector using deep learning is using extracted colour, texture and size 
values from biological samples to be used in object-based image analysis (OBIA) detection.  This 
can be done by extracting the colour information from hair samples using reflective 
spectrometry. These colour values are used as inputs for the OBIA ruleset to perform a semi-
automated supervised classification.   
 

2.3.4 Manual classification 
 

The manual classification of the object within UAV-acquired imagery is tedious and time-
consuming. This method, on the other hand, is easy to deploy with limited training needed, 
compared with often complicated software algorithms used in automated classification. In the 
scope of wildlife survey: The analysis requires a human to look at each image or video identifying 
the species of interest. The large data set that can be generated in a relatively small time and 
human error are both drawbacks of using this method. However, it is proven to be a successful 
data analysis method if used correctly (Rey et al. 2017). 
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2.3.5 Supervised classification 
 

Supervised classification use input from the user to guide the classification process. The user 
specifies the perimeters of the classification manually, but the classification is automated. This 
method usually results in a higher accuracy compared to unsupervised classifications. Supervised 
classification of UAV imagery in censuses of species is proven with a high amount of accuracy 
(Groom et al. 2013). 
 
Supervised classification can be subdivided into two categories; pixel-based, and object-based. 
Pixel-based classification relies solely on the reflectance values of the included imagery colour 
bands, no ancillary data is used in the classification process. OBIA classification group pixel with 
similarities as an input from the user together as an object (Cai & Liu 2013). OBIA in classifying 
objects in imagery related to environmental studies are used with success (Laliberte et al. 2010; 
De Kock 2015), the process, however, requires technical knowledge of GIS-based classification 
software.  
 
The use of reflective spectrometry, applied to remote sensing analysis is relatively a comen 
practice (Herold et al. 2004). However, uncommon when used as an input for wildlife detection 
from imagery. With the advances in UAV sensors, the use of survey-acquired imagery is more 
frequently applied in wildlife identification and management (Linchant et al. 2015b; Hodgson et 
al. 2016; Gonzalez & Johnson 2017). In conservation management where the monitoring is using 
UAV imagery, there is usually the need for the automatic detection of individuals or a specific 
species (Chabot 2009; Maire et al. 2015). Without automation, this process of a person looking 
at each image is time-consuming and labour intensive. However, applying OBIA to UAV-based 
acquired imagery to identify wildlife the detectability and limitations of this method need to be 
considered (de Kock et al. 2021). The use of lab measured coat reflection is a novel research area 
that requires the adjustment of processes to aline reflective spectrometry and OBIA. The 
conversion of data types generated by the reflective spectrometry analysis to be used in the 
digital environment of image analysis is a prerequisite.  
 
Commission Internationale de l'Eclairage (CIE) defined the Lab colour space in 1976, where L 
indicates lightness, a is the red/green coordinate, and b is the yellow/blue coordinate. Converting 
CIE Lab to a digital red, green and blue (RGB) colour space that is visualised on digital monitors 
presents a range of challenges. With technology improving digital monitors, so do the sRGB 
colour space that is shown on digital monitors (Süsstrunk et al. 1999). From the sRGB standard 
(Stokes 1996) in 1996 with a relatively narrow gamut to the ITU-R BT.2020 with a wide gamut, 
usually used in ultra-high-definition monitors (Ryu et al. 2014). However, with the use of multiple 
digital platforms using sRGB colour space from UAV sensors, the photogrammetry software and 
the OBIA software need a standardised digital colour space for the data flow through these 
processes.  
 
OBIA classifies groups of pixels with similarities as input from the user together as an object and 
was primarily developed for remote sensing data analysis where large data-set are relatively 
common (Dingle Robertson & King 2011; Cai & Liu 2013). This method of classifying objects in 
imagery related to environmental studies is used with success (Laliberte et al. 2010; De Kock 
2015). OBIA use a ruleset that includes a  range of user-defined conditions as an input from the 
user, to perform a semi-automated supervised classification (Yu et al. 2006). In this instance, 
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automated detection focuses on object detection of individual animals (Singleton et al. 2010) by 
using the input from lab-measured coat reflection values to target a specific species. When this 
analysis is applied to georectified orthophoto mosaic imagery, in addition to the objects 
identified, the process allows for a range of attribute information extraction e.g. location (X, Y 
and Z), size, height and colour values of the object. This additional information enriches the 
census data, opening the door for additional data mining and spatial analysis (Yu et al. 2006). 
 

2.3.6 Automated classification 
 

Automating the classification of the object in UAV imagery follows in most cases a GIS software 
approach. GIS techniques developed for use in Satellite imagery are widely used with processed 
imagery compatible with this platform.  
 

2.3.7 Machine learning and artificial intelligence 
 

Deep learning is a process describing computer-based learning that allows computational models 
that are composed of multiple processing layers to learn representations of data with numerous 
levels of abstraction (LeCun et al. 2015). 
 
Recent developments in machine learning and artificial intelligence (AI) in wildlife monitoring 
and surveying (Gonzalez et al. 2016) open the door for future innovation in this field of computer-
based data mining on UAV-acquired imagery.  WildBook (Berger-Wolf et al. 2017), open-source 
software used by citizen conservation programs in a range of fields, is developed for species-
specific research, identifying species or individual animals from imagery data set in an automated 
way. Other examples of using AI in data mining for wildlife conservation include shorebird 
extraction from UAV imagery (Groom et al. 2013). 
 

2.4 More than species identification 
 

The ‘drone perspective’ refers to the top view of the image where the horizontal sensor in 
relation to the environment or object. Processed UAV imagery data to a geo-reidentified 
orthophoto mosaic allow scaled imagery with relatively high accuracy. Consequently, if the 
object can be extracted from the processed dataset, this object will have embedded 
measurements that allow for the comparison with morphometric baseline measurements of the 
species. This new field in science has recently been explored in blue and grey whales (Burnett et 
al. 2018). 
 If a baseline analysis of known sizes and lengths of the species of different sex and age exists, 
these data can be applied to the UAV imagery, and in theory, more information can be extracted. 
This method may include the identification of late pregnancy in females, age groups and 
individuals with unique morphometrics about the spatial resolution of the imagery. 
 

2.4.1 Zoometric data extraction 

 

Zoometric data derived from UAV-based wildlife surveys are attracting increasing attention 
because of the ability to collect data on the condition of individual animals. Surveying species to 
obtain accurate population estimates is a necessary but challenging task requiring a considerable 
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investment of time and resources. Traditional ground-based monitoring techniques, such as 
camera traps and surveys performed on foot, are resource-intensive, potentially inaccurate and 
imprecise, as well as being challenging to validate (Gonzalez et al. 2016). For conservation 
purposes, it is essential to collect consistent and reliable information about species distribution 
and abundance to develop plans for species protection and sustainable population management 
(Riede 2000). Remote sensing is generally regarded as being able to contribute to this aim, mainly 
through its ability to provide continuous spatial information (Leyequien et al. 2007). However, 
demographic parameters (e.g. age and sex structure) are needed for conservation decisions and 
appropriate management of animal populations. Previous studies show that the coefficient of 
variation of individual survey estimates of abundance often exceeded 50% (Seddon et al. 2003). 
Maximising the extraction of available data can assist in getting more information from limited 
field data and improve overall data quality. 
 
Historically, aerial imagery from crewed aircraft and a manual system where field biologists 
document visual observations are an accepted method to estimate individual animal sizes (Koski 
et al. 2006). High-resolution, low-altitude UAVs can be used to determine the individual animal 
size, depending on the species and the survey environment (Watts et al. 2010). Advances in 
photogrammetry software and the use of low-altitude imagery from UAVs (Berteška & Ruzgienė 
2013) have transformed the way data are handled in a digital environment; which has added a 
range of possibilities to individual animal morphometric analysis.  
UAV monitoring is not limited to the identification of species. Extracting additional information 
can give further insight especially if enhanced by more nuanced perspectives of age structure, 
growth rates (Christiansen et al. 2018), sex ratios, reproductive status, body condition (Krause et 
al. 2017), and behaviour (Torres et al. 2018). This method provides the basis for rapidly and 
accurately measuring animal features from UAV data and fills a critical conservation need. 
Furthermore, this method is relatively non-invasive by nature (Horton et al. 2019) and usually 
allows monitoring of species that can be difficult to physically measure otherwise (Duro et al. 
2007). The remote data collection, therefore, allows for the collection of critical monitoring data 
without the increased stress of capturing and handling the animals. 
 

3 Methods  
 

3.1 Study sites and animal species 
 

The study was conducted altogether in eight countries (Figure 2), on 17 ungulate species, and a 
total of 121 flights, various UAV devices and types of flights were used (Appendix 1). Although 
there is no clear definition for the spatial reference for North Africa, the study focused mostly on 
the African continent north of 10-degree latitude. Particular study sites, namely Dubai Desert 
Conservation Reserve (UAE), are described in more detail later in the text where relevant to 
specific study. 
 Investigated animal species predominantly included large ungulates from arid regions in Africa 
and the Middle East. Out of the 17 species that were surveyed, 11 are listed in the threatened 
category in the IUCN red list (IUCN 2021). Large ungulates refer to the total body weight of adult 
animals and in the context of this article; adult ungulates average weight of > = 50 kg. The most 
study species was O. leucoryx which is described in more detail later in the text where relevant 
to the specific study. 
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Figure 2: Study areas in Africa and the Middle East 
 

3.2 Systematic review process 
 

For the purpose of this review, we searched for scientific peer-reviewed papers using the Web 
of ScienceTM database on 2022/04/24. We used the timeframe from 2000/01/01 to 2022/04/24 
and a topic search with the following Boolean operators: (((ALL=(Ungulates OR Wildlife OR 
Mammals)) AND ALL=(Drones OR UAV OR RPAS)) NOT ALL=(marine OR whale)) and only 
considered publications in the English language. 
 
The Web of ScienceTM database search resulted in 428 identified publications which were 
imported into the review software package Covidence (Covidence 2022), where two duplications 
were removed and 428 studies were screened against title and abstracts. This screening process 
considered whether the title or abstract specifically included mention of ungulates and UAVs as 
a survey tool, where survey refers to any observation of the animals using UAVs. A total of 361 
studies were excluded and 65 studies were assessed for the full-text review. Here, we included 
only those studies where a UAV survey/observation was the primary focus of the study so that 
details on the flight characteristics and specific species were available. During this process, an 
additional 29 studies were excluded, of which 14 studies were excluded because the study 
focused on UAV-acquired data analysis rather than specifically mentioning the methodology of 
UAV-based monitoring. In addition, nine studies did not specifically include a focus on ungulates, 
three were from a theoretical perspective, two did not focus on the use of UAVs and one was 
not written in English. 
 
This process resulted in 36 studies included in the review. These studies then underwent a data 
extraction process (Appendix 2). The criteria for the data extraction focussed on the country and 
area, the species monitored, the UAV and the sensor/s used, the data collected, the flight details 
(including altitude, UAV launch location, flight speed and if the flight was automated or remotely 
piloted) and the ethical considerations made before flights, including disturbance to the species 
of interest, other animals and the environment.  
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The data extraction categories included the following:  
- The ungulate species considered included odd- and even-toed ungulates and land-based 

Proboscidea. 
- The country where the study was conducted.  
- The UAV platform is categorised as multi-rotor, fixed-wing or vertical take-off and landing 

(VTOL) uncrewed aircraft. These were also divided into weight categories.  
- The piloting/flight path of the UAV was divided into automated flights or remote piloted 

flights. In addition, if the flights were conducted for the purpose of census, flights were 
characterised as targeted (cantered around a specific point/target) or as transect (where 
the UAV was programmed to fly grids/patterns covering an area). 

- Flight parameters were also extracted and these include the minimum and maximum 
altitude above ground level (AGL), as well as the minimum and maximum speed during 
the flight. The distance that the UAV was launched from the target species was also 
included. 

- Ethical considerations were assessed using a "tick box" method where we ask the yes/no 
question: is disturbance/impact/effect mentioned in the article? If the answer to this was 
yes, we assessed whether any ethical considerations included only the target species, or 
whether other species were also mentioned.  

 
3.2.1 Synthesis of six (2016-2022) years of UAV-based data acquisition for conservation-
based monitoring: UAV platform, sensors and setups for UAV-based ungulate monitoring. 
 
We summarised methodological approaches (Table 2) that we applied in our UAV-based 
ungulate monitoring, which included 121 flights in eight countries and 17 ungulate species 
(Appendix 1).  
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Table 2: Summary of UAV-based ungulate monitoring flight setups in our research 

Region No 

Africa 87 

Asia  6 

Middle East 28 

Species   

Wild 96 

Domestic 2 

Wild & Domestic (Single flight) 23 

Type   

Census 94 

Targeted 27 

UAV size   

250g – 1000g 18 

1000g – 1500g 64 

>1500 g 39 

Flights   

Automated 83 

Piloted 38 

 
Most studies were primarily conducted for population demographic surveys as an adaptive 
management tool or as baseline data to inform species conservation initiatives on endangered 
ungulates. Out of the 17 species that were surveyed, 11 are listed in the threatened category, in 
the IUCN red list (IUCN 2021) and for those species, these flights contributed toward population 
management strategies in an official capacity. This data set is also unique in that it spans the 
development period of UAV-based surveys, serving as an informative dataset on the capabilities 
and ease of use of this emerging technology. We utilised five types of multi-rotors and fixed-wing 
UAVs, with AGL UAV flight heights ranging from 40-120 m.  
 

3.2.1 Defining disturbance levels: a case study on the Western Derby eland 

 

The disturbance study was done on the Western Derby eland (Taurotragus derbianus derbianus) 
in Bandia Reserve (Senegal). We used two types of multi-rotor UAVs: DJI (Da-Jiang Innovations 
Science and Technology Co., Ltd.) Phantom 3 Pro and DJI Phantom 4 Pro. All flights were launched 
> 200m away from the target. A dedicated UAV operator piloted the UAV manually, and an 
observer observed the target with 10 x 42 binoculars (Steiner, Germany). The disturbance was 
quantified into four categories: (I) No disturbance detected, (II) animal exhibited alert behaviour 
(i.e., ears pointed in direction of UAV), (III) animal/s walking away from approaching UAV and 
(IV) animal/s running away from approaching UAV. 
 
A total of ten flights, per UAV type, were conducted on groups of at least three individuals. All 
flights started and ended at the launch position. The UAV was launched and its AGL was increased 
to 120m (the maximum allowed flight height in many regions) vertically above the take-off 
location. Hereafter, the UAV was flown horizontally at 120m AGL above the target species (Figure 
3). The UAV was kept hovering over the target for one minute before descending at <1.0m.s-1 (to 
avoid excessive propeller noise during stabilisation) to the following flight levels: 100 m, 75 m, 
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50 m and 25 m. If any reaction was observed during the transition from one altitude to the next, 
the AGL altitude was recorded for that disturbance event. The UAV was stationary at each flight 
level for one minute in which any reaction was recorded. The highest-ranking reactions of any 
individual were recorded. If more than one reaction was observed, the highest scored 
disturbance was recorded. If the target showed a reaction as described for III and IV, the test was 
aborted and the UAV returned vertically to the 120 m flight level before being returned to the 
take-off location. All flights were conducted downwind of the target species groups to avoid the 
effects of olfactory detection and to reduce audible disturbances during take-off and approach 
of the UAV.  

 
Figure 3: UAV flits to quantify disturbance 

3.2.2 Statistical analyses of review and own data outputs 
 
Analyses to visualise data were conducted in R (V 4.0.5) through the R Studios interface (V 
1.31056). The R-markdown file on all statical analyses in R is available under the supplementary 
electronic material. The geom_boxplot as part of ggplot2 was used to visualise the data extracted 
from the article review and the data from our research. The boxplot shows the median of the 
plotted data as a line in the box, dividing the box into the lower and upper quartiles. The line 
extended past the box indicates the lowest to highest data value and the dots indicate data 
outliers.  
 
A K-mean cluster analysis was used to visualise the data that was collected in categories that was 
represented a range, e.g. minimum or maximum altitude of the UAV. To compare the K-mean 
cluster centres from the minimum and maximum AGL flight altitude, the outlier of 800m (Su et 
al. 2018) was removed and two clusters and the centres were calculated.  
We developed classification and regression trees using the CARET package (Kuhn 2019). Decision 
tree models developed from the data extracted from the review investigate if the minimum and 
maximum AGL altitude, and flight speed can predict when disturbances are detected. In addition, 
the minimum AGL altitude and UAV size were used in a model to predict detectable disturbance. 
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Using our data we modelled maximum altitude and flight time to predict the UAV type to be used 
(Appendix 4).  
 

3.3 Semi-automated detection using object-based image analysis 
 

3.3.1 Model animal species, study sites, and hair and image sampling  
 

The Oryx leuoryx is classified in the genus Oryx and is the only within the genus with distribution 
out of Africa. Compared with the species within the Oryx genus, the overall size makes the O. 
leucoryx (Figure 4A) the smallest. This medium-sized desert-dwelling antelope historically ranged 
over the Arabian Peninsula and as far north as Syria (Tear et al. 1997). The O. leucoryx was 
declared extinct in 1972 (Henderson 1974) and through successful captive breeding programmes 
(Wilson & Price 1994; Hatwood 2017) the species was reintroduced (Daly 1988; Price 1989; 
Ostrowski et al. 1998; Simkins 2007; El Alqamy et al. 2008) to their historical range. Post-release 
monitoring was identified as a critical management action to manage the species in protected 
areas (Ostrowski et al. 1998; El Alqamy et al. 2008; Islam et al. 2011).  
 
Hair samples from the study herd (n=50) were collected at Al Bustan Zoological Centre (lat 
25.134944, long 55.881889), a conservation breeding centre, situated in Sharjah Emirate within 
the United Arab Emirates (UAE). The managed O. leucoryx population is housed as part of the 
regional captive conservation breeding programme of O. leucoryx. All individuals are handled 
yearly for routine veterinary checks that include: vaccinations, health checks, breeding access 
and separations, as per the best practice guidelines (De Kock 2018). Hair samples of O. leucoryx 
older than ten months, the weight of sample <3g per individual, were collected from the back of 
each animal during this management process. The age parameter was added because of the 
change of the calf ‘sand’ colour (called ‘الطلا’) before the calf transforms to the white adult colour, 
which usually happens from around 2.5 to 8 months old. The samples were collected from the 
full herd (N=61) excluding individuals < 10 months (N=11) of age. Each sample was stored 
separately and included attribute data of each individual that included the transponder 
identification number, age, sex and date of collection. 
 
The outputs of hair sample analyses from the study herd were compared with datasets (Table 3) 
collected by UAV in the Dubai Desert Conservation Reserve (DDCR; lat 24.824789, long 
55.657069). The DDCR is a 225km2 protected area in the Dubai Emirate in the UAE that houses 
>800 reintroduced free-roaming O. leucoryx with the purpose of an O. leucoryx national and 
regional conservation plan.  
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Table 3: UAV Survey datasets summary 

Survey 
Date 

Animals 
identified 

Time of 
day 
(UTM +4) 

Lamination 
and 
conditions  

Flight 
Time 

Resolution Sensor 

4/03/2018 72 10:34 AM 
– 10:45 
AM 

Natural 
sunlight, No 
clouds 

11m 23 s 3.94 
cm/pixel 

1/2.3” CMOS 
Lens 20mm 
f/2.8 

18/03/2018 56 09:38 AM 
– 09:54 
AM 

Natural 
sunlight, No 
clouds 

16m 54 s 3.98 
cm/pixel 

1/2.3” CMOS 
Lens 20mm 
f/2.8 

14/10/2018 47 08:55 AM 
– 09:11 
Am 

Natural 
sunlight, Slight 
cloud cover 

16m 34s 3.98 
cm/pixel 

1/2.3” CMOS 
Lens 20mm 
f/2.8 

 

3.3.2 Reflect spectrometry 

 

Hair samples of 50 individuals from the captive study herd of  O. leucoryx were analysed with the 
Konica Minolta CM-5 spectrophotometer (Tokyo, Japan). The sample quantity per animal was 
specified by the permit not to exceed 3g of hair. The reflection was measured of each sample 
spread to cover the measurement window in a petri dish. The Konica Minolta CM-5 built-in petri 
dish calibration was activated for reflection analysis. Simulating daylight for digital analysis was 
considered, options include the D75 for ‘North Sky Daylight, D65 ‘Average Daylight and D50 
simulating ‘Noon sky Daylight. D65 is a CIE standard illuminant that simulates mid-day daylight 
with a correlated colour temperature of 6504 K (Noboru and Robertson, 2005). The D65 best 
represents the high luminosity of a desert environment.  
 
The spectrometer measures wavelengths of 360 nm to 740 nm with a standard deviation within 
0.1% (400 nm to 740 nm). Each sample was measured three times with a slight adjustment of 
the sample to increase the variety of angles and the covering a more significant part of each 
sample during the analysis process. The data output was provided in a range of colour formats 
(CIE Lab, Hunters L, a, b; CIE XYZ) and wavelength-specific measurements.  
 

3.3.3 Conversion of CIE Lab to digital RGB  

 

Although there is a standardised colour space with a wide gamut, the relative narrow sRGB colour 
space resulted from the CIE Lab colour space conversion for inclusive digital representation was 
selected because the UAV sensor captured imagery in RGB format. The mean of the three 
readings of each sample was converted from CIE Lab to an RGB 8-bit digital value with a D65 
setting. MATLAB (Natick 2019) was used as a platform for the conversion following command 
lab2rgb (Mathworks 2020). 
 
The sRGB 8-bit converted colour values with the visualised colour in Table 4, show a colour value 
darker than expected when looking at the image of the O. leucoryx in Figure 4A as well as 
dominated light grey colours in Figure 4 to the earth colours in Table 3. This colour difference 
occurred because the hair samples were not washed before the spectrometry analysis. This is 
because the aim was not to determine the colour composition of the O. leucoryx’s coat, but to 
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see the colour in real-world conditions as seen by UAV-based surveys. This may allow for 
environmental colour pollution like desert sand trapped between the hair. Secondly, in Figure 4 
(C and D) the colour gamut is split into individual colours that represent the black of the horns 
and face markings, environmental pollution like desert sand and dirt trapped in the coat as the 
sandy colour, and the overall light grey representing the majority of the O. leucoryx’s body. 
 
Table 4: CIA Lab converted colour range to sRGB 8-bit range with 65% daylight as a white point. 
The range of each colour band is shown as a minimum, maximum and mean value. The RGB 
colour is a combination of each value combination.  
 
Brightness adjustment of sRGB 

CIE Lab (D65) L a b 

Min 45.02 -0.29 2.74 

Max 75.54 1.72 9.9 

Mean 62.82 0.323 6.33 

sRGB (8Bit) R    G    B     

Min 108 106 102 

Max 197  184 168 

Mean 157.45 151.39 140.83 

Standard 
Deviation 

14.89 13.96 14.80 

sRGB (8Bit) R +65 G + 65 B +65 

Min 173 171 167 

Max 255  250 233 

Mean 222.45 216.39 205.83 

 

 

Figure 4: A: An adult O. leucoryx top view. B: The O. leucoryx top view where the background was 
removed. C: The sRGB gamut represents the O. leucoryx as seen in B.  D: The CIE Lab gamut 
represents the O. leucoryx as seen in B. 
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The RGB gamut does not have a specific band for brightness if compared to CIE Lab where the 
‘b’ represents the brightness band, in sRGB this ‘brightness’ is generally incorporated in the 
respective RGB values by a higher value to represent an increase in ‘brightness’, among others. 
Adjusting brightness in sRGB is a complex adjustment depending on the required field of 
application (Reinhard et al. 2002). The brightness adjustment was done using the Brightness 
modification of 8-bit sRGB values formula (Bezryadin et al. 2007) and resulted in the values 
shown in Table 4.  

(R, G, B) = (r + M0, g + M0, b + M0) 
 
Where ‘r’, ‘g’, ‘b’ values each respectively represent the 8-bit sRGB values.  
Where ‘R’, ‘G’, ‘B’ represent the adjusted sRGB 8-bit colour band values adjusted for brightness 
(Table 5). 
Were M0 represents the respective sRGB value for brightness adjustment. 
 

3.3.4 UAV, sensors and control systems  
 

During the data acquisition of the re-introduced O. leucoryx in the DDCR, the following UAV was 
used: the Ebee Plus (SenseFly, Switzerland) with a Canon S100 (Canon Inc., Japan) camera. The 
flight plan was developed in Pix4Dcapture (Ver 4.2.0) with a flight altitude of 90m AGL and 
picture intervals with a subsequent 80% side- and 80% front overlap, with an orthophoto mosaic 
resolution of 3.98cm/pixel. Three flights of the study herd over different time periods: 4 -, 18 
March 2018 and 14 October 2018, were surveyed and processed. 
 

3.3.5 Photogrammetric processing and data analysis 

 

The UAV acquired images with location data captured during the flight and written in the Exif 
header file of each image with the required overlap needed for photogrammetric processing. 
This processing of imagery to a georectified orthophoto mosaic was done using DroneDeploy 
online processing services (www.dronedeploy.com).  
 
The processed imagery was added to eCognition Developer© v.9 (Trimble, USA), an OBIA 
software (Blaschke 2010) where the data were analysed using a developed ruleset to extract 
adult O. leucoryx from the imagery using OBIA supervised classification. The ‘Adult Arabian Oryx’ 
ruleset, available under supplementary electronic material, provides details on the segmentation 
process, object identification, class assignment and the export of the data.  
The OBIA ruleset starts with the segmentation analysis, two segmentation processes were used. 
Firstly, the multiresolution segmentation and secondly the spectral deference segmentations 
analysis. The process divided the orthophoto mosaic into well-defined objects, including the O. 
leucoryx. Both analyses weighted the sRGB colour bands the same. The input for object 
classification was the three colour bands, sRGB >= minimum values identified in Table 3. The 
objects that met the bigger or equal to the set minimum values were classified. The classified 
object was filtered using a minimum size requirement of >= 50 pixels (3.98 cm/pixel) to refine 
the results.  This minimum size of 199cm2 representing the 50 pixels is <10% of the drone 
footprint of adult O. leucoryx (de Kock et al. 2021b). This allows for noise reduction to still identify 
O. leucoryx if the animal is partly obstructed, for example, by vegetation, during the survey.  
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Lastly, the identified object was exported as a smoothed polygon shapefile (.shp) with added 
attribute values that include the mean of each colour band and the total brightness represented 
in the object and the number of pixels represented in each object. The extracted shapes were 
exported as a polygon shapefile that includes data on the number of pixels within the polygon. 
This analysis was completed for a total of three sample data sets taken from the UAV imagery 
sample data of the protected area, and each sample set exceeds 1 km2 in size. 
The digital measurements in a comma-separated file format were exported as a dataset in R 
v3.6.2 (R_Core_Team 2013). The dataset included all digital measurements as well as attribute 
data that included; the date, colour values, and the individual object size. The data structure was 
investigated and visualised using ggplot2 (Wickham 2016), colour-distance (Weller 2019) and 
colourspace (Ihaka et al. 2019) libraries.  
The orthophoto mosaic imagery of each dataset and the OBIA vector files were added to 
ArcMap 10.7.1 (ESRI, Redlands, CA, USA) to visualise the results identified objects on the UAV-
based orthophoto mosaics. 
 

3.4 Zoometric measurements and modelling 
 

3.4.1 Study species and sites 

 

The O. leucoryx is a large-bodied arid-adapted antelope and the only member within its genus 
that ranges outside of Africa. Compared with other species within the Oryx genus, the overall 
size makes O. leucoryx the smallest. The historical range of this medium-sized desert-dwelling 
antelope covered the Arabian Peninsula and as far north as Syria (Harrison & Bates 1991). The 
species now occurs in a few reintroduced populations and many semi-captive populations in the 
Arabian Peninsula with substantially improved conservation status; yet most of the sites included 
in the 2011 assessment had to be fenced (Mallon & Price 2013), including our study site, the 
DDCR in the United Arab Emirates (UAE). 
 
The present research incorporated information on three herds. The first referred to as the 
reference herd (n=10); these animals were marked and data were collected from both a fixed 
camera and a UAV to compare the two types of digital image collection methods. The second 
herd, referred to as the study herd (n=121), was used to collect baseline top view imagery data 
(Appendix 3) where measurements and known data like age, sex and weight were used to 
develop predictive models. The reference herd and study herd were both from managed captive 
populations. The third herd, referred to as the reintroduced herd, consisted of animals within 
the protected area. The study herd and the reference herd imagery were collected at Wadi al 
Safa Wildlife Centre (25.091200, 55.282360), the Arabian oryx conservation breeding centre, 
situated in the Emirate of Dubai, UAE (Figure 5). A large managed O. leucoryx population is 
housed as part of the regional captive O. leucoryx conservation breeding programme. All 
individuals are handled yearly (O’Donovan & Bailey 2006) for routine veterinary work, including 
vaccinations, health checks, and breeding access and separation, as per best practice guidelines 
(De Kock 2018). Individual animal baseline data including identifiers, weight, demographics and 
pregnancy status in females, were collected during this management process. Historically 
collected data like date of birth were referenced from the zoo-based database.  
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Figure 5: Arabian oryx conservation breeding centre, situated in the Emirate of Dubai, UAE 
 
Field data collected from digital measurements on captive O. leucoryx of the ‘study herd’ were 
compared with data collected from the reintroduced herd by UAV, in the Dubai Desert 
Conservation Reserve (DDCR; 24.824789, 55.657069), a 225 km2 protected area that is home to 
over 800 reintroduced O. leucoryx to conserve the species. To validate accuracy between the 
digital photo measurements and UAV imagery, the reference herd was measured using both 
techniques.  

 

3.4.2 Validation image acquisition 
 

As part of ongoing veterinary monitoring of captive and reintroduced oryx, both populations are 
captured annually, and routine measurements, such as weight, are collected. During this process, 
we also validated photogrammetry techniques using a remotely triggered camera affixed to the 
animal management area during captures. Digitised morphometric measurements of the species 
were obtained using scale and colour-rectified top view imagery where the sex, age, and weight 
of individual O. leucoryx were known, from the study herd (n=121) and reference herd (n=10). 
This imagery was acquired by a remotely triggered camera mounted within the animal 
management area.  
 
To calibrate these images, we placed vertical and horizontal scale bars in the separation areas, 
where the oryx were temporarily held for veterinary procedures (Figure 6). The mounted scale 
bar was used as a point of calibration at the point of focus and permitted digital measurement 
of the total visible animal as seen from a top-view image; this image is referred to as the animal’s 
‘drone print’ where the animal is present in the aerial view of UAV derived imagery. Images of 
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the animals taken in the separation area were recorded with either a GoPro 3 (GoPro, USA) action 
camera or with a Sony QX1 (Sony Cameras, Japan) with a Sony E 20 mm f/2.8 lens, both set to 
maximum resolution.  
 

 
Figure 6: A - O. leucoryx top view image with digital measurement using KLONK software and 
scaled image. B - Temporary markers, used for animal identification during the accuracy 
assessment (n=10) of the reference herd from Wadi al Safa Wildlife Centre. Applied marks after 
baseline measurements. C - UAV processed image with a resolution of 2.5 cm/pixel from 100 m 
Above Ground Level (AGL) of the same animal after release. D - O. leucoryx top view image in the 
separation area. E - ImageJ, threshold object extraction for semi-automated measurements. 

 

3.4.3 Digital zoometric measurements  
 

To assess the accuracy of the digital measurements of the same individuals from a single scaled 
digital image and UAV acquired imagery processed, geo-rectified orthophoto mosaic, 10 animals 
of the reference herd were marked for individual identification using a non-toxic non-permanent 
coloured hairspray. A stencil with 12 squares in a grid of 4 x 3 (each square 7 cm x 7 cm) was cut 
into vinyl and placed on the back of the animals. Animals were marked consecutively as they 
were handled in a ‘tamer’ (Fauna Research, Red Hook, New York), an animal restraining system 
used for captive ungulate management, and released into their holding pen. The markers were 
added to allow accurate identification in the comparison of the digital measurements with geo-
rectified UAV imagery. 
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A range of limitations that includes the available number of animals, managing stress levels and 
environmental conditions during the handling process, resulted in limited data. Because the 
animals were released into their enclosures as soon as possible after marking, some individuals 
were not visible during the subsequent UAV flight. With animal welfare as a prime concern, a 
second flight was not undertaken to avoid undue stress on the animals. As such, only six usable 
animal observations were utilised for the accuracy assessment. 
 
Still images with reference scale of both the study and the reference herds were measured 
digitally. In the study herd, a total of 121 O. leucoryx were sampled (88 females and 33 males 
from the age of 1 month to 17 years). In the reference herd, ten animals were measured (5 males 
and 5 females ranging from 3-14 years). A total of three measurements of each animal was 
collected: 1. Total length from the base of the tail to tip of the nose (cm); 2. Overall 2-dimensional 
area of the top view (cm2); 3. width, namely the fullest part of the animal (cm) perpendicular to 
the dorsal median plain. All measurements were made from scaled imagery in two dimensions. 
 
Individual top view images were added to KLONK© Image Measurement Software Professional, 
Ver 16.1.1.4 (Image Measurement Corporation, Cheyenne, USA) for manual measurement and 
ImageJ©, Ver 1.52a (Laboratory for Optical and Computational Instrumentation, University of 
Wisconsin, USA), for semiautomated measurement using colour threshold analysis. The 
mounted scale bars in the separation area were used to rectify and scale the image on the focal 
length. Total body length (tip of the nose to base of the tail), and total visible area (top view 
perspective) were measured for the individual animals. In addition to the digital measurements 
of the scaled photos of the study-and reference herd, their sex, weight, age, and pregnancy 
status were recorded. 
 
The reference herd (n=10) was measured twice in different software applications. These double 
measurements were taken to compare the relation between the manual digital scale imager 
measurements and the automated process resulted from the Object-Based Image Analysis 
(Bertelsen et al.). Firstly, similar to the study herd, the images were scaled and measured using 
the same techniques. Secondly, automated measurements were taken from OBIA results in the 
form of exported polygon files of the drone print of each identified animal, using measurement 
tools within ArcMap 10.7.1 (ESRI, Redlands, CA, USA). The second method was also applied to 
the reintroduced O. leucoryx oryx herd (n=43) within the DDCR, used to validate the effectiveness 
of the predictive pregnancy model. 

 

3.4.4 UAVs, sensors and control systems 
 

Aerial photographs were taken using a DJI Inspire 2 UAV (DJI, China) with a Zemusse X5S camera. 
Flight planning was carried out with DroneDeploy v.2.0.11 (DroneDeploy, USA) software set to a 
height of above ground level (AGL) of 100 m with a side-lap of 75% and front-lap of 85%, as 
recommended for the photogrammetry software. The maximum speed of the UAV was set to 15 
m/s. To increase the total spatial accuracy of the photogrammetry model, ground control points 
(GCPs) were collected and added to the photogrammetry processing to provide validation points 
for subsequent distance-based measurements of imagery. A total of five GCPs in the pattern of 
four points in the corners and one in the centre (De Kock & Gallacher 2016) of the surveyed area 
were added to the photogrammetry input. Each GCP’s geographical coordinates were acquired 
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with <15 cm, using a Trimble Geo 7x handheld GNSS (Trimble, UAV) system to improve the overall 
accuracy of the resulting orthophoto mosaic. 
During data acquisition of the reintroduced O. leucoryx in the DDCR, an Ebee Plus UAV (SenseFly, 
Switzerland) with a Canon S100 (Canon Inc., Japan) camera was used. The flight plan was 
developed in Pix4Dcapture (Ver 4.2.0) with a flight altitude of 100 m AGL and picture intervals 
with a subsequent of 80% side- and 80% front overlap, with an orthophoto mosaic resolution of 
4 cm/pixel. 
 

3.4.5 Photogrammetric processing and analysis 

 

The UAV acquired and geotagged images with the required overlap needed for photogrammetric 
processing were processed using DroneDeploy online processing services 
(www.dronedeploy.com). The processed imagery was added to eCognition Developer© v.9 
(Trimble, USA) using an object-based image analysis (Bertelsen et al.) software (Blaschke 2010), 
where the data were analysed using a developed ruleset (De Kock 2015) to extract O. leucoryx 
from the imagery using OBIA supervised classification. The extracted shapes were exported as a 
polygon shapefile that included data on the number of pixels within the polygon. The extracted 
size perimeters and digital measurements of marked individuals were compared to determine 
the accuracy of the drone imagery and secondly imported to R v3.6.2 (R_Core_Team 2013) 
statistical software. 
 
The three available measurements from the processed images - total length, width (W) and total 
area (drone print) - were extracted in a semiautomated way. The width was rejected because of 
the possibility of an increase or decrease in these measurements over a relatively short period. 
Therefore, in animals that become fatter or thinner, while maintaining the same or similar body 
length (such as in pregnancy where the drone print and width measurements will increase during 
pregnancy and decrease after birth), the total body length will be similar. Similarly, the body 
condition can be affected by environmental conditions like droughts where the abundance of 
food for the O. leucoryx are directly influenced. Normalising the drone print using the total length 
of the animal allowed the data to be indexed with a single value, the normalised drone print 
index (NDPI): 

𝑁𝐷𝑃𝐼 =
(𝐷𝑃 − 𝑇𝐿)

(𝐷𝑃 + 𝑇𝐿)
 

The NDPI value range was 0-1, with DP (drone print) being the total top view of the animal (cm2) 
and TL (total length) the distance from tip of the nose to base of the tail (cm). The NDPI values 
were categorised in a bracketed index that represents certain features. The application of the 
NDPI and the bracketed index on the DDCR dataset required the calculation of the NDPI in 
ArcMap. The OBIA extracted polygons representing individual animals were imported into 
ArcMap. Because the OBIA identified the objects from a raster image, the object boundary 
followed pixel boundaries, the OBIA data consisting of a polygon shapefile and attribute data 
including the total number of pixels within the polygon and the end-to-end length of the polygon 
at its widest measurement. These two attribute values presented the DP and the TL of each 
extracted animal. The imported OBIA attributes included the pixel size and the number of pixels 
represented in the polygon, both values were used to calculate the DP (in cm2). The NDPI was 
calculated within ArcMap and added as an attribute value to the polygon shapefile.  
Lastly, the selected range of the bracketing index was displayed to visualise the result in a 
geographical format. 
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3.4.6 Data analyses and model evaluation 

 

The dataset of the reference herd was used to compare the physical animal zoometric 
measurements and the UAV-based photogrammetry processed imagery and digital 
measurements. The data sets from the study herd were used to develop predictive models. The 
dataset included all digital measurements as well as attribute data that included the date of birth, 
sex, weight, identification number, and pregnancy status for females. 
 
The Drone Print data (DP) were normalised using the Total Length (TL) of the animals (Equation 
1), resulting in a Normalised Drone Print Index (NDPI) ranging from 0-1. The NDPI was used as 
the basis for the bracketing index, where a specific range of data was bracketed to present 
particular features. The average, mean average, minimum, and maximum of each feature, within 
the index, were used as a guide to determine the best-suited bracket with the highest R2 and 
include the most significant number of correlated data within the dataset.  
 
A variety of models and model types were developed to investigate the best model fit focus on 
predictability. The inputs were used to develop the best fitting model to predict the age, weight, 
sex and pregnancy of individual O. leucoryx. The model types included linear regression, 
polynomial and predictive models. Computer learning decision trees were also employed using 
R and the Classification And Regression Training (CARET) package (Kuhn 2019). 
The models included: the O. leucoryx weight predicting models; the two developed polynomial 
models using respectively the DP and NDP to predict weight; O. leucoryx age predictive linear 
and polynomial models using DP and NDP; O. leucoryx pregnancy prediction based on the 
decision-tree models, using the DP, NDP, TL and W; O. leucoryx sex prediction using the decision-
tree, based on DP, NDP, TL and W data. During the polynomial model fit test, the Akaike 
Information Criterion (AIC) was used to evaluate potential overfitting because the data used to 
develop the model were also used to test the overall fit.  
 
Where the predicted data were known, the model fit was tested on the additional imagery, 
otherwise, the data were split into test and training subsets, and the models were tested using 
the ‘test’ subset. The polynomial model fit was evaluated using the P-value, R-squared and where 
(x)2 was used, the adjusted R-squared. 
 
The pregnancy status of the O. leucoryx in the DDCR was monitored by the rangers using 
researcher-led visual observations that were developed by the DDCR management team. The 
criteria included a visual assessment of physical features as well as behaviour, captured by well-
experienced rangers.  
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4. Results  
 

4.1 Methods and ethical considerations for the monitoring of ungulates using 
UAVs: Systematic review synthesis 
 
From the articles that were reviewed (n=36), most ungulates focussed UAV studies have been 
conducted in Africa (n=11) (Mulero-Pazmany et al. 2014; Lhoest et al. 2015; Hartmann et al. 
2021) nine studies have been conducted in Europe (Witczuk et al. 2018; Roberts et al. 2020). The 
number of studies has more than doubled from 2020 (n=6) (Beaver et al. 2020; Fritsch & Downs 
2020; Hu et al. 2020) to 2021 (n=13) (de Kock et al. 2021a; Fritsch et al. 2021; Obermoller et al. 
2021). 
 
4.1.1 UAV platforms and sensors 
 
The most utilised UAV type were multi-rotors at 69% (n=25) and within this class, the 1000g-
1500g weight class was the most popular at 48 % (n=12) of all multi-rotors (Inoue et al. 2019; 
Liang et al. 2020; Petso et al. 2021) and was utilised in a range of research applications. Fixed-
wing UAVs accounted for only 28% of studies (n=10) (Mulero-Pazmany et al. 2015; Linchant et 
al. 2018a; Witczuk et al. 2018) but these generally covered larger areas (> 2.km22). VTOL UAVs 
were only used in 5.6% of cases (n=2) (Chretien et al. 2016; Bennitt et al. 2019) and these were 
also the most expensive or specialised platforms (Gu et al. 2017).  
In total, mostly RGB imagery sensors were mounted on UAV platforms (75%; n=27). Thermal 
imagery sensors were present in 42% (n=15) of cases (Beaver et al. 2020; Kim et al. 2021) and 
25% (n=9) of the research that we assessed used this in a combination with RGB imagery sensors 
(Christie et al. 2016; Preston et al. 2021; Rahman et al. 2022) either on the same UAV or a 
dedicated UAV platform. One study used a radio-tracking system (Roberts et al. 2020) and one 
did not use any sensor (Hahn et al. 2017).  
 
4.1.2 Data acquisition platforms and characterisation 
 
The data types that were collected included census (Cukor et al. 2019; Rahman et al. 2022), 
feature extraction (de Kock et al. 2021a; Ito et al. 2022) and behavioural monitoring (Maeda et 
al. 2021; Schroeder & Panebianco 2021) (Figure 7). The reviewed articles indicate a preference 
for the use of fixed-wing UAVs for focused ungulate censusing (Beaver et al. 2020; Hu et al. 2020; 
Roberts et al. 2020), while multi-rotor UAVs are widely utilised across all fields of study 
(Schiffman 2014; de Kock et al. 2021a; Kim et al. 2021; Petso et al. 2021).  
 



 

33 
 

 
Figure 7: UAV type application in ungulate monitoring 

 
Flights conducted for the purpose of an ungulate census are usually flown higher, faster and as 
automated flights when compared with targeted flights, which are more common in behavioural 
observations (figure 8 and Appendix 4). 

 
Figure 8: Type of UAV flights comparing airspeed and Above Ground Level (AGL) UAV flight height. 
The boxplot shows the airspeed median in m/s as a horizontal line, error lines indicate the min 
and max value. 

4.1.3 Flight plans 
 
Flight altitude 
The flight altitude Above Ground Level (AGL) is mentioned as a range in AGL in most studies. The 
K-mean cluster centres were identified for both the minimum and maximum AGL and the K-mean 
centre for the lower AGL resulted in 57.88 m and the upper K-mean centre resulted in 104.66 m, 
with an outlier on both the minimum and maximum of 800 m which was removed from analysis 
(Su et al. 2018b). 
AGL altitude for flights focused on censusing resulted in a mean of 61.23 m in the lower range 
(minimum AGL) and 104.23 m in the upper range (maximum AGL) with the mode of 100 m for 
both ranges. Compared to flights focused on behavioural studies where the AGL mean in the 
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lower range resulted in 40.71 m with a mode of 30 m. The AGL mean in the upper range resulted 
in 100 m with a mode of 50 m. The trend indicates a higher altitude for census-based UAV flights 
with a mean average of 85.11 m compared to flights focused on behavioural studies with a mean 
average of 76.18 m.  
The trade-off between battery life and area under survey resulted in a generally higher AGL 
altitude for survey flights (Christie et al. 2016), which will allow more area to be surveyed with a 
mean average of the AGL range at 82.73 m when compared to piloted targeted flights with a 
mean average of the AGL range 70.36 m. Considering all flights combined, flights conducted over 
ungulate species on average are flown at 81.61 m AGL (Figure 9). 
 

 
Figure 9: A: Minimum air speed and Above Ground Level (AGL) UAV flight height.  B: Maximum 
air speed and AGL of different types of UAVs. The boxplot shows the maximum airspeed median 
(A), minimum airspeed median (B) as a vertical line, error lines indicate the m 
 
4.1.4 Ethical considerations 
 
Of the 36 papers that were considered, only 36% (N = 13) of the articles indicated ethical 
considerations made during the flight plan design that focused on multiple species (Hahn et al. 
2017; Cukor et al. 2019; Hartmann et al. 2021) and 28%, (N = 10) of the article's ethical 
considerations focus on disturbance of the species of interest only (Obermoller et al. 2021; Zhou 
et al. 2021). In addition, 44% (N =16) of articles did not mention any ethical considerations or 
disturbance when developing the flight plan or during the flights (Linchant et al. 2015a; Inoue et 
al. 2019). The decision-tree models using the minimum and maximum AGL altitude, and 
minimum and maximum speed to predict disturbance were insignificant with an accuracy of 67% 
and p-value >0.05. 
 
In the majority of the articles, even if ethical considerations were mentioned (Roberts et al. 2020; 
Fritsch et al. 2021) the disturbance was not quantified, and it was unclear what behaviour was 
interpreted as a disturbance. Limited articles (Bennitt et al. 2019; Zhou et al. 2021) quantify 
disturbance, and of these, both studies considered the launch distance and AGL altitude of the 
UAV as factors that will indicate disturbance in the form of a behavioural response from the 
species of interest. This behavioural response was classified as (I) any response and (II) evasive 
response (Bennitt et al., 2019).  
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Figure 10: A: UAV weights and Minimum Above Ground Level (AGL) UAV flight height showing 
the level of disturbance and B: Ethical considerations made before flights and Minimum AGL UAV 
flights showing the level of disturbance. The boxplot shows the minimum AGL median in m as a 
vertical line, error lines indicate the min and max value, and the dots indicate outliers. 

The UAV (Figure 10 A) size 1000g-1500g that was also used for 67% of the studies shows the 
highest level of disturbance. However, the skewed data set with over-representation of this 
weight class need to be considered in this context. Where disturbance was detected (Figure 10 
A & B) regardless of weight classes, the analyses show no disturbance of flights > 60 m AGL.  UAV 
size (figure 11 A), flight time over a target species (Figure 11 B) and the airspeed of the UAV, 
regardless of the flight type and UAV type; has less disturbance impact when compared to the 
AGL UAV flight height (Figure 11 A-C). The decision tree model using minimum altitude and UAV 
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size as an input to predict disturbance detected is not significant with an accuracy of 67% and a 
p-value >0.05. 
 

 
 
 

 

Figure 11: A: UAV size in weight classes and Above Ground Level (AGL) UAV flight height indicate 
if disturbances were observed. B: UAV flight time over the target species and AGL UAV flight 
height indicate if disturbances were observed. C: UAV airspeed over the target species and AGL 
UAV flight height indicate if disturbances were observed. The boxplot shows the AGL median in 
m (A), flight time median (B) and airspeed median in m/s (C) as a vertical line, error lines indicate 
the min and max value, and the dots indicate outliers. 

 
 

 

 
 
 

B C 



 

37 
 

4.1.5 A synthesis of six years (2016 -2022) of UAV-derived data from ungulate surveys for 

conservation.  
 

We utilised five types of multi-rotor UAVs and fixed-wing UAV. With AGL flight height ranging 
from 40-120 m. During our surveys (Appendix 4), we found that the most appropriate UAV 
platform for ungulate surveys depends on the area under survey, the specific species and the 
survey requirements. Surveys on Oryx dammah (Chad), Nanger dama (Niger) in large reserves 
required the use of fixed-wing UAVs with longer flight time capabilities to cover the desired 
areas, whilst smaller areas could be covered by multirotor UAVs. The species detectability 
governed the combination of flight height and sensor resolution. For example, during automated 
detection model development approaches, lower flight heights were required for clearer images 
that increase detectability, especially for more cryptic species. The habitat also played a big role 
in the selection of the flight and sensor characteristics. For example, surveying the Oryx leucoryx 
could easily be done at 100 m AGL (de Kock et al. 2021b) as the habitat is relatively homogenous 
and open, and animals that have coat colour contrasting to the environment, could easily be 
detected in images from this altitude. This differed in other cases, e.g., brown-coated 
Tragelaphus derbianus (Senegal), where the tree cover induced detectability issues and flights 
had to be conducted at lower AGLs for clearer images.  
 
4.1.6 Quantifying disturbance: a case study on the Western Derby eland. 
 

The Western Derby Eland actively avoids UAVs when they are at or below 50 m AGL, and no 
active avoidance could be detected from approach flights at 120 m AGL to 50 m AGL (Figure 12). 
The DJI Phantom 3 Pro induced more disturbance at lower altitudes when compared to the DJI 
Phantom 4 Pro, and this UAV platform had noticeably more audible flight adjustment feedbacks 
during stable flight when compared to the Phantom 4 Pro, although not statistically significant 
when UAV height and type was used to predict disturbance with a model accuracy of 38% and 
p-value = >0.05. Differences could be detected in the induced disturbance between the two 
different types of UAVs at AGLs greater than 50 m.  
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Figure 12: Summary of the reaction levels of disturbance of two types of UAVs on T. derbianus 
derbianus at a range of Above Ground Level (AGL) flight altitudes. The boxplot shows the AGL 
median in m as a vertical line in the box, error lines indicate the min and m. 

4.2 Semi-automated detection of large ungulates 
 

4.2.1 Object-Based Image Analysis  
 

The results of the spectral data analysis (Table 5) and the visualisation (Figure 13) show the 
standard deviation and mean of each value in the CIE Lab and sRGB colour space of the adult O. 
leucoryx (n=50) analysed hair samples. The converted mean CIE Lab reflective spectrometry 
colour values of the hair samples of adult O. leucoryx to 8-bit sRGB resulted in a Red value of 
157.450, Green value of 151.390 and Blue value of 140.832 without the brightness adjustment. 
These sRGB values were added as an equal or larger than the cut-off colour value where all the 
objects with a combination of all three colour values, equal or higher than the cut-off values and 
a minimum size permitter were added as the input of the OBIA ruleset identified adult O. 
leucoryx. The use of the sRGB values without the brightness adjustment was selected to allow 
the ruleset a wider range in identification when imagery is underexposed and because there is 
no upper limit set for the ruleset, this will allow a wider range of detection when images are 
overexposed.  
 
The results of the three UAV imagery surveyed datasets of the protected area were re-introduced 
O. leucoryx after applying the ‘Adult Arabian Oryx’ ruleset as seen in Figure 13. The OBIA ruleset 
identified adult O. leucoryx with a high degree of accuracy (Table 5), an average of 96.16% when 
applied to the three datasets, therefore proving the potential to be a robust ruleset. The 
robustness needs additional testing on additional datasets on landscapes with a higher 
heterogeneity. 
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Figure 13: The resulting output of the OBIA ruleset run on the UAV acquired data set of 4 March 
2018. A: Show the processed imagery into an orthophoto mosaic. B: Shows the adult Arabian 
Oryx identified by OBIA (in yellow). C: Shows a closer view of the identified adult O. leucoryx with 
numbering labels. 
 

The ruleset performed well in all three datasets that present different environmental conditions, 
and different times of the day and year. During visual result evaluation, the ruleset did not 
identify any O. leucoryx with the ‘sandy’ calf colour, as illustrated in Figure 13 A&B - objects a. 
However, there was one false negative in two of the datasets (Figure 13A- object B&C and 3B – 
object B). 
 
The OBIA software groups pixels of similar values together to represent objects. The results of 
the object identified in the three datasets (Table 5) show the mean sRGB colour values. If there 
is no clearly defined boundary between objects of the same values specified in the ruleset, the 
objects will be grouped as a single object. This is observed in Figure 14A object C, where two 
animals are close to each other with a limited background to clearly define the boundary and 
therefore result in a single object classification.  
 
Table 5: The mean sRGB values and standard deviation of the object identified by ‘Arabian Oryx’ 
OBIA ruleset. 

Dataset 
Date 

Mean 
Red 

Standard 
Deviation  

Mean 
Green 

Standard 
Deviation 

Mean 
Blue  

Standard 
Deviation  

Total 
Oryx 
Identified  

Total 
Objects  

4/04/2018 228.42 4.63 198.41 4.78 153.80 7.52 72 8561 

18/04/2018 230.46 4.37 199.99 6.81 154.56 7.56 56 2435 

14/10/2018 221.94 6.51 194.12 7.83 150.27 9.07 47 7131 

 
In this case, although the OBIA ruleset identified the object, it failed to differentiate multiple 
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objects, and this shortcoming is a segmentation issue rather than a final classification process. 
The failure to distinguish between numerous objects within the identified object will affect the 
survey's overall accuracy, resulting in undercounting.   
 

    

Figure 14: A: Identified adult O. leucoryx from the 18 March 2018 dataset. Object A- The O. 
leucoryx calves in their juvenile coat colour is not identified by the OBIA ruleset as an adult O. 
leucoryx. Object B- a ‘ghost image of an O. leucoryx, where the shadow is visible; however, the 
animal itself moved during or between overlapping images resulting in the ‘ghost’ image. Object 
C- Multiple objects identified as a single object. B: Identified adult O. leucoryx from the 18 March 
2018 dataset. Object A- The O. leucoryx calves still in their juvenile coat colour is not identified by 
the OBIA ruleset as an adult O. leucoryx.  
 

Table 6: Result of identified Adult O. leucoryx applying the OBIA ruleset: ‘Adult Arabian Oryx’ on 
all three datasets, indicated as a confusion matrix. 

 Yes No 

Yes 175 0 

No 2 25083 
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4.3. Feature extraction  
 

4.3.1 Morphometric data extraction and application  
The accuracy was 98.41% with a Standard Error of the Mean (SEM) of 0.401 for the DP and 
97.99% with an SEM of 0.345 between the fixed camera image and zoometric measurements 
from processed UAV imagery of the reference herd (Table 7).  
 
Table 7: Accuracy assessment between baseline and UAV acquired imagery with the Standard 
Error for the Mean (SEM) 

  Baseline 
measurements 

UAV images 
Accuracy   

 in % 

ID 
Drone 
print (cm2) 

Total 
length (cm) 

Drone 
print (cm2) 

Total 
length (cm) 

Drone print 
Total 
length 

2475 2797.99 124.49 2778 121.52 99.29 97.61 

2007 2805.65 120.75 2792 118.96 99.51 98.52 

2205 2973.67 121.4 3054 123.32 97.37 98.44 

2390 3570.23 150.12 3609 147.2 98.93 98.05 

1173 2496.85 117.3 2427.88 115.92 97.24 98.82 

1964 2574.62 124.92 2525 120.54 98.07 96.49 

        Average 98.4 97.99 

        SEM 0.4008 0.3446 

 
The candidate weight predictive models (Appendix 5) consisted of two linear models and two 
polynomial models to determine which models were best supported by the data (Table 8). The 
linear regression model predicted the weight of individual O. leucoryx using the DP predicted 
weight produced a relatively high model fit (R2 0.799, overall comparison of AIC 923.49). 
However, based on the R2 the model performed poorly, especially considering residuals, which 
included younger animals that were growing rapidly to adult body size. The model using NDP 
(Figure 15) resulted in an R2 of 0.7969 and an AIC of 948.83. Of the polynomial models using DP 
and DP2, and NDP and NDP2, the first resulted in R2 of 0.85 and AIC 919.68, while the NDP and 
NDP2 model performed the best in predicted weight (R2 0.85, AIC 912.38).  
 
Table 8: Candidate predictive model comparison of fit. Weight (W), Drone Print (DP) and 
Normalised Drone Print (NDP) 

Model Predict Inputs R2 AIC 

Linear Regression W DP 0.8 923.49 

Linear Regression W NDP 0.8 948.83 

Polynomial W DP & DP2 0.85 919.68 

Polynomial W NDP & NDP2 0.85 912.38 
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Figure 15: Oryx leucoryx normalised drone print index (NDPI) and weight (n=121) graph, with a 
fitted polynomial regression model, with NDPI and normalised drone print index squared (DNPI2). 
 
The age predictive models using DP and NDP were not significant: the polynomial regression 
using DP to predict age (R2 0.562, df 119, residual stander error of 35.17), and that using the NDP 
to predict age (R2 0.525, df 119, residual standard error 36.61). The models’ inability to predict 
the age with relatively high precision is influenced by the growth curve that flattens out when 
antelope reach adulthood. The bracketed index, when focusing on age, from birth to adulthood 
showed more potential, possibly related to the natural breaks in the data and general lack there 
off when the animals reach adult size.  
 
The decision-tree models (Appendix 6-9) using the width to predict pregnancy and the model 
using the DP, NDP, TL and W had the same accuracy (0.917, p < 0.01). However, the model only 
using the width was preferred because of the simplicity and the fact that the accuracy and p-
value were not affected. The decision tree model predicted that O. leucoryx with a measurement 
of > 37 cm on the widest part of the drone print was pregnant. The high accuracy made this 
model a reliable tool to predict pregnancy in an O. leucoryx herd from UAV based imagery. 
 
The decision tree model predicted that O. leucoryx with a measurement of ≥ 33 cm on the widest 
part of the drone print, NDPI > 0.88 and total length > 115 cm, were males. The model fit test 
utilising 30 % of the data indicated a 72.2% accuracy (p = 0.58). The model’s low accuracy, high 
p value and low representation of adult male O. leucoryx within the train and test dataset, 
negatively affected the usability of the predictive model.  
Data with a high correlation with the DP allowed for predicted values using the NDPI to have a 
higher level of confidence. Data features like the age of the animals that had a lower correlation 
with the DP were predicted to perform poorly when the NDPI was used to predict age in a 
population.  
Applying the bracketed range of the NDPI (Table 9) to the sample data results allowed the 
prediction of limited age group information, female pregnancy and weight ranges within the 
herd, with a high probability. 
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Table 9: Bracketed index of Oryx leucoryx features with probabilities 

Index range Feature indicated Probability (%) 

0.85–0.90 <16 months old 96% 

≥0.915 Female pregnant 92% 

≥0.915 Weight ≥80 kg 100% 

≥0.922 Female 100% 

 
The bracketed NDPI was applied to a UAV acquired and photogrammetry processed orthophoto 
mosaic of the reintroduced herd of O. leucoryx within the DDCR. The age bracket was applied to 
the reintroduced herd in the DDCR and showed 100% accuracy, as verified by trained rangers’ 
researcher-led visual observations.  
 
The weight bracket could not be verified; verification would require the capture and weight of 
these wild animals and this was not an ethical or practical option. The pregnancy bracket index 
showed that 24 individuals were identified as possibly pregnant from the 43 identified individuals 
identified by OBIA; possibly pregnant females are shown on the map as green triangles (Figure 
16). The DDCR rangers’ researcher-led observations of 21 females showed visible signs of 
pregnancy, resulting in an overall accuracy of the applied NDPI bracketed guideline for 
identifying the high probability of pregnancy in O. leucoryx of 87.5%. Lastly, the female-identified 
by the female bracketed index was 100% accurate. 
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Figure 16: A - Applied NDPI bracketed guidelines for estimating possible pregnancy in O. leucoryx 
from one of the re-introduced(n=43) herds on DDCR. B - Orthophoto mosaic processed from UAS 
acquired imagery. 
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5. Discussion  
 

5.1 Methods and ethical considerations for the monitoring of ungulates using 

UAVs: Systematic review  
 
UAVs are an appropriate monitoring tool for ungulate population surveys if the UAV is launched 
far enough from the survey area and is kept above 60 m AGL. This also makes the platform ideal 
for many other ecological surveys, as even small UAVs provide resolutions at the sub 5cm/px 
GSD (Ground sampling distance, measured in centimetre per pixel) level at 60 m AGL.  
Many filed biologists relying on traditional survey techniques may be overwhelmed by the ever-
developing UAV monitoring industry, which can hinder the implementation of the technique. It 
is important not to overlook the advantages of this low-impact survey method, especially when 
compared to manned aerial surveys, which are orders of magnitude more costly and invasive, 
inducing flight responses at much greater altitudes (Christie et al. 2016). In context, UAV-based 
monitoring of ungulates is relatively new and has undergone limited research on the application 
of this method, its shortcomings and the effect on species and the environment compared to 
more traditional and established monitoring methods. Most off-the-shelf multi-rotors use 
lithium polymer (LiPo) batteries and the increase in the UAV size results in increased power 
needs. Therefore, generally speaking, the larger the electrical UAV the larger the battery and 
lithium content. Increased restrictions on the transport of LiPo batteries especially during air 
travel (Shen et al. 2020), may add additional complications during transportation. In addition, 
the full impact of battery waste on the environment is still unclear and may add complications 
during the recycling process and the containment of dangerous elements (Melchor-Martínez et 
al. 2021). 
 
It is also important to consider the shortcomings of the UAV approach and to identify the specific 
requirements for implementing UAVs as a survey tool on various scales. For instance, it would 
be unfeasible to attempt a large reserve survey using a small multirotor. Conversely, a large fixed-
wing UAV will increase disturbance levels if flights need to be conducted on small reserves at low 
altitudes for the monitoring of smaller species, especially considering the footprint of a fixed-
wing UAV, which resembles a large raptor.  
 
Multirotor UAVs were by far the most widely implemented platform for ungulate surveys, but 
they range considerably in size. Smaller UAVs, typically in the 1000-1500g range were widely 
implemented, and this may be due to a trade-off between efficiency and capital investment, as 
these platforms (mostly DJI Phantom's) are relatively low-cost, offering high-quality imaging 
sensors in an easy-to-use package. However, limitations like battery life and legal limitations on 
maximum flight operations limit off-the-shelf multi-rotors (e.g., DJI Phantom 4 Pro), to cover 
smaller areas (2.016 km2) even with an energy optimisation setup and favourable environmental 
conditions (Pradeep et al. 2018).  
 
Pre-flight planning is an important phase when developing census methodologies for any area, 
and this is reflected in the published literature, as most studies use automated flights that follow 
premeditated flight characteristics. This also highlights the need to be aware of a few factors 
before commencing with any survey-type flight over any ungulate species. Knowledge of the 
species, habits and habitat is required to identify the best resolution and flight path 
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characteristics that will ensure high detectability and efficiency. Additionally, ethical 
considerations need to include the effects on the target species, but also the environment in 
which the UAV will be operating. For instance, during some of our surveys (Appendix 1), the UAV 
did not induce a disturbance in Western Derby eland that we could identify visibly, but the 
presence of a large flying object induced vocal responses and fleeing in monkey populations 
(Chlorocebus sabaeus) within the study area. Not all UAV disturbances provoke visible 
behavioural response, physiological response was recorded with limited behavioural responses 
to UAVs (Ditmer et al. 2015). In other instances, no disturbance effects were observed on the 
Northern giraffe (Giraffa camelopardalis), Dorcas gazelle (Gazella dorcas), Dama Gazelle and 
Addax (Addax nasomaculatus). In rare cases, the UAV was actively pursued by black kites (Milvus 
migans) and forced an abandonment of the survey flights in that area. The framework of these 
flights (Table 10) is summarised and includes references to vegetation types, species monitored, 
UAV selection, mean average flight perimeters (AGL and flight time) and if visible reactions to 
UAV disturbance were observed.  
 
Table 10: Summary of our research on UAV-based ungulate monitoring focuses on the 
vegetation type, UAV selection, flight perimeters and species monitored 

Vegetation Type Flights 
(n=121) 

Type  Species UAV Type Area 
covered 

Avr 
Flight 
time 

Avr 
AGL 
(m) 

Disturbance 
Detected 

Semi-desert 
  
  
  
  
  

38%  
(n=46) 
  
  
  
  
  

Census 73% 
(n=34) 
Targeted 26% 
(n=12) 
  
  
  
  

Addax nasomaculatus 
Camelus dromedarius 
Giraffa camelopardalis 
Nanger dama  
Oryx dammah 
Gazella dorcas 

Fixed Wing 
74% (n=34) 
Multi-Rotor 
26% (n=12) 
  
  
  
  

< 1km2  4% 
(n=2) 
1 - 2km2 
26% (n=12) 
2 - 5 km2  
20% (n=9) 
> 5 km2 
50% (n=23) 
  
  

00:31:25 
  
  
  
  
  

106.3 
  
  
  
  
  

N  80% 
(n=37) 
Y  20% 
(n=9) 
  
  
  
  

Senegalese 
savanna 
  
  
  
  
  
  
  
  
  

32% 
(n=39) 
  
  
  
  
  
  
  
  
  

Census 44% 
(n=17) 
Targeted 56% 
(n=22) 
  
  
  
  
  
  
  
  

Taurotragus derbianus 
derbianus 
Ceratotherium simum 
Oryx gazella 
Equus burchelli 
Nanger dama  
ragelaphus scriptus  
Giraffa camelopardalis 
Camelus dromedarius 
Gazella dorcas 
Phacochoerus 
africanus 

Multi-
Rotor100% 
(n=39) 
  
  
  
  
  
  
  
  
  

< 1km2 59% 
(n=23) 
1 - 2km2 
36% (n=14) 
2 - 5 km2  
5% (n=2) 
  
  
  
  
  
  
  

00:09:11 
  
  
  
  
  
  
  
  
  

72.56 
  
  
  
  
  
  
  
  
  

N  87% 
(n=34) 
Y  13% 
(n=5) 
  
  
  
  
  
  
  
  

Desert biome 
  
  
  

23% 
(n=28) 
  
  
  

Census 100% 
(n=28) 
  
  
  

Camelus dromedarius 
Nanger dama  
Oryx leucoryx 
Gazella marica 

Fixed Wing 
3.6% (n=1) 
Multi-Rotor 
96.4% 
(n=27) 
  
  

< 1km2  
25% (n=7) 
1 - 2km2 

71% (n=20) 
2 - 5 km2  
3.6% (n=1) 
  

00:14:34 
  
  
  

89.11 
  
  
  

N  100% 
(n=28) 
  
  
  

Forest biome 5% 
(n=6) 

Census 100% 
(n=6) 

Sus barbatus Multi-Rotor 
100% (n=6) 

< 1km2  
67% (n=4) 

00:15:20 88.33 N  100% 
(n=6) 

 
A current shortcoming of quantifying disturbance is linking the reaction of the animal directly to 
the presence of a UAV. The majority of UAV pilots are qualified under the visual line of sight 
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(VLOS) category, usually legally limited to a maximum of 500 m between pilot and UAV. 
Therefore, the pilot needs to be ≤ 500 m from the target and the presence of humans and human 
activity at this distance may be the cause or a contributing factor to the disturbance response. 
During ungulate monitoring in Chad, scimitar-horned oryx and dorcas gazelle showed a strong 
movement response and kept > 1 km between them and the UAV pilots (personal experience). 
When the method of piloting was changed to a first-person view (FPV) and the UAV was launched 
> 1 km away from the target species and where terrain restricts the visibility of the vehicles and 
people, we managed to monitor scimitar-horned oryx and Dorcas gazelle as close as 40 m, 
without inducing an evasive response. 
 
This highlights the importance of site-specific assessments of possible disturbances that need to 
be considered to ensure that appropriate steps are in place to respond to any adverse conditions 
during surveys. A specialist on the species and habitat under survey would be best suited to 
evaluate the possible effects of a UAV survey.  
A concerning factor is the lack of ethical considerations in many of the studies that were 
evaluated. Even though these studies may have included this as part of their ethical research 
approval, the novelty of the methods requires this to be reported, as the expertise to assess 
ethical flight considerations may not exist within the framework of many institutions. If no 
experts are available, a panel of reviewers, who are specialists in UAV surveys, could be consulted 
as part of the methodological development process and any alterations to reduce disturbance 
can be mentioned in survey reports. As a minimum, it would be beneficial for any census to 
preserve records of the flight plans/flight paths which can be evaluated/advanced or repeated 
in future applications. In the absence of this information, studies are not replicable, and the 
scientific method is void. Coupled with this, the rapid advance in UAV sensor technologies would 
require comparative data between survey flights, as population increases may only be the result 
of increased detectability, and flight parameters would be required when this type of data is 
reviewed.  
 

5.2 Semi-automated detection of large ungulates 
 
Our study demonstrates the effective use of animal coat reflective spectrometry data as an 
input to OBIA to identify specific species from UAV base imagery, with good performance on the 
datasets. However, more data from a range of heterogeneous landscapes are needed to test the 
overall robustness and performance of the OBIA ruleset. The extracted reflective spectral data 
produced a species spectral reflectance signature, this proof of concept has a range of practical 
applications where specific species can be targeted during the data analysis of UAV-based 
imagery.  
 
If confounding factors like data quality are controlled the OBIA ruleset performs well, this can 
include the standardisation of the sensor and settings like white balance to name a few. There 
are, however, data inconsistencies that affect the overall efficiency of the OBIA ruleset to identify 
individual animals. The UAV-acquired imagery is processed by photogrammetry software, using 
multiple images taken during the survey, and turns it into a composite orthophoto mosaic. The 
combination of overlapping images in the photogrammetry process to produce a single ortho-
rectified image presents complications with objects that move during or in-between images. This 
results in ‘ghost’ objects as seen in Figure 3A object B and in extreme cases, the moving object 
between images can result in multiple representations of the same animal or no representation 
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of the object in the final composite image. In addition, confounding factors can include a range 
of factors related to the UAV platform: stability, the selected flight plan; the sensor: sensor 
sensitivity, motion blur and the environment: vegetation cover, heterogeneous landscapes etc.  
 
The significant differences in images representing O. leucoryx visible in Table 4, Figure 4 and 
Figure 3 show the influence of a non-standardised sampling technique where the sensor 
perimeters are automatically adjusted with limited supervised input. The influence of the 
variation of white balance settings between the survey data and the change in lighting conditions 
on the survey dates results in a range of challenges during colour comparisons. Most off-the-
shelf UAVs and sensors are programmed to produce a ‘beautiful photo’ with limited manual 
programming of the sensor, however, the automated setting adjustments of the sensor are 
negatively influenced by the automated gamma correction and white balance adjustment. 
Standardisation of the survey sensor, including the white balance (Seyednasrollah et al., 2019) 
can improve colour comparisons between datasets.  
 
Ethical UAV-based wildlife surveys are paramount; however, these ethical standards are absent. 
Wildlife populations can respond idiosyncratically to UAV wildlife surveys, depending on a variety 
of factors (Hodgson & Koh 2016). Although some countries did develop ethical protocols when 
using UAVs for wildlife surveys (Gonzalez & Johnson 2017), ethical UAV wildlife survey operation 
is the main responsibility of the UAV pilot.  

Automated wildlife detection from UAV-based imagery as a survey tool is a relatively new 
research area with a range of data extractions and analyses to investigate. The automated 
extraction of animals from photogrammetric-processed datasets includes spatial and temporal 
data. Additional data extraction of UAV-based animal surveys focuses on imagery baseline top 
view measurements applied to UAS-acquired imagery. This has a range of practical applications, 
which will increase with the addition of multiple UAV data acquisitions over set intervals e.g. 
seasonal. These time-specific dataset comparisons may include calculations of survival rates of 
offspring, herd dynamics, and behavioural research. 
 

5.3 Feature extraction 
 
There was a remarkably strong relationship between zoometric measurements and the O. 
leucoryx pregnancy predictive models. The developed models have a range of practical 
applications in the field of conservation. A field biologist responsible for the management of 
reintroduced O. leucoryx can use the tool to extract individual animal data applicable to the 
decision-making process. Furthermore, when multiple seasonal UAV acquired datasets are used, 
these time-specific data comparisons may include calculations of the age structure, pregnancy 
and body condition scoring of the herd. 
The combination of the pregnancy predictive model and the age bracket to identify O. leucoryx 
<16 months, when used in yearly data analysis of the herd can provide insight into the 
relationship between pregnancy and calf survival rates. The age predicting model may improve 
if the data were filtered into a subset in a specific age range, with a better fitted linear model.  
 
However, there are limitations. This tool can only be used where the animals can be detected 
and extracted in a semi-automated or automated way with relatively high accuracy. Data from 
smaller animals will prove to be more challenging to extract and would be directly influenced by 
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the resolution of the surveyed imagery. Vegetation, mist and other environmental conditions 
limit image capture of the species of interest with traditional red, green and blue (RGB) sensors. 
Similarities in the relation between the animal coat colour and the environmental background 
may be challenging for the detection process, especially if the survey data are limited to RGB 
camera sensors. The errors may be influenced by a range of factors that can include the quality 
of the data, the overall accuracy of the images processed by photogrammetry software resulting 
in a geo-rectified orthophoto-mosaic, the cm/pixel size of the resulting orthophoto-mosaic, the 
sensor used, and movement of the animals during the aerial survey. Further research in the area 
of animal detectability, detection probability and limitations using OBIA, is needed. 
 
Safe operation of the UAVs is the primary concern of drone pilots and meteorological conditions 
may limit the performance of the UAV and result in grounding of the plane. The survey area is 
usually limited to UAV operations and, in most cases, the flight time per battery (Zhang et al. 

2016). Better sensors with increased resolution are a current trend. This results in a larger file 
size for each picture and therefore an increase in the data set size, putting more pressure on 
computer hardware and increasing the cost of data analysis (Casella et al. 2017). 
 
UAV legislation (Luppicini & So 2016; Stöcker et al. 2017) has been created in some countries and 
developed in others over the last decade. In a range of countries, UAVs are limited to dedicated 
or shared airspace with formal legislation limiting altitude, area of operation, UAV type, and 
formal UAV pilot training; thus, making use of UAVs for field observations in conservation is a 
complicated task. Field ecologist skill sets may be limited for deploying this tool effectively; a 
combination of UAV operations, photogrammetry software, and GIS-based data analysis skills 
are currently required to mine UAV data effectively. Future challenges include the automation 
of the range of this process in an interface that is user-friendly with technical analysis running in 
the background as well as providing an answer for the end-user, usable results, and results of 
value for the field biologist managing endangered species. 
 
Ground-based monitoring of O. leucoryx in protected areas is commonly used as an observation 
and survey technique at ground level, and UAV surveys provide an efficient aerial alternative to 
some of these traditional survey techniques. The mostly desert terrain in the historical range of 
the species is relatively difficult to navigate; UAV surveys and the ability to extract additional 
animal-specific information may make this an attractive tool for future use.   
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6. Conclusions  
 
Within the current legislative environment governing UAV flights, pre-flight assessments often 
require a tick-box approach where risks are considered subjectively and evaluated individually. 
This type of approach to wildlife surveys is problematic, as natural systems are dynamic and a 
"tick-box list" that considers all possible disturbance factors would be unfeasibly lengthy and 
complicated. For example, it would have to consider periods where there is an added 
environmental stress factor (Mulero-Pázmány et al. 2017) that may increase the sensitivity of 
the species e.g. droughts, and social dynamics like the breeding season or the species 
composition in the habitat under survey. We envision that future research on standardisation of 
UAV-based monitoring techniques is developed as a series of guidelines that need to be 
considered in context by a specialist in the habitat/system under survey, rather than a tick-box 
of parameters. Although the research indicates that ungulates could be monitored without 
inducing visible disturbance in the form of a moving response at an AGL of 60 m, we suggest that 
higher AGL, within the legal limits, should always be considered.  
 
Creating an automated or semiautomated data extraction tool, in this case, an OBIA ruleset focus 
on the data extraction of adult O. leucoryx will assist field biologists during the technical data 
extraction process. Our study demonstrates that UAV-based monitoring combined with the OBIA 
ruleset to detect adult O. leucoryx can positively increase the accuracy of population estimates. 
The case study can be adapted to a range of species by extracting baseline coat reflection values 
and integrating the results in a similar process. The coat reflection data analysed to represent a 
specie’s reflection signature can be added to the global species feature database. The ability to 
focus the automated detection to recognise species’ reflection signatures can be a valuable tool 
in a range of wildlife studies. However, this method is a tool that performs well in optimal 
conditions for this toolset. The sampling of captive animals and applying the results to a free-
living population allows for a non-invasive automated survey technique. The conditions may 
include meteorological, environmental, surveyed species, UAV sensor, flight plan, 
photogrammetric processing and the UAV pilot, which may all affect the data quality and 
performance of this toolset.  
 
Islam et al. (2011) have suggested that historically, during post-release monitoring of O. leucoryx, 
the low-density distribution of these reintroduced animals results in a population size estimate 
with low accuracy. The DDCR with a single flagship species is dedicated in its efforts to protect 
O. leucoryx; however, there is a need to continuously monitor herd health, without the risk of 
adverse negative effects to the re-wilding strategy. UAV-acquired imagery proved to be an 
effective tool and can assist in providing critical information to reserve management in a non-
invasive manner. 
 
Future studies should aim to develop practical tools to support decision-making and focus on 
management-oriented results to assist in species and population management, especially in a 
delicate arid environment. Future studies on UAV-based zoometric data analysis are suggested 
to investigate more feature extraction like animal height, which has practical application in large 
mammal age classification. Furthermore, the height can be combined with the DP to calculate 
the volume and this may assist in individual animal body condition predictions from UAV 
imagery. This information will give protected area managers a better insight into the physical 
condition of individual animals and the overall herd especially during high-risk periods that may 
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include those after re-introductions, disease outbreaks and droughts. Moreover, the advantage 
of the imagery data is that it can be reprocessed and analysed in the future if needed, or if 
advances in analysis and software allow for more comprehensive data mining. 
 
When a field biologist applies UAV-based imagery to conservation planning it requires the 
coming together of three skillsets: knowledge of the species in its environment, safe operations 
of drone hardware, and data interpretation. (De Kock & Gallacher 2016). In addition, ecological 
understanding of the species and the possible negative impact of this method are needed to 
select the optimum hardware, software and flight criteria to ensure high data quality and 
minimum environmental disturbance. 
 

7. Supplementary Electronic Material 

 
The data used in the research and R-markdown code is available at: 
https://github.com/Meyerdk/Ungulate-UAV-monitoring 
https://github.com/Meyerdk/Oryx_Reflective_Spectrometry  
 

  

https://github.com/Meyerdk/Ungulate-UAV-monitoring
https://github.com/Meyerdk/Oryx_Reflective_Spectrometry
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Appendix 1 Supplementary Table 4: UAV-based ungulate monitoring, which included 121 

  flights in eight countries and 17 ungulate species  

 

Date Country Type Species_2 UAV UAV_size Area Flight_t

ime 

Alt_

Max 

Speed Disturbance 

20/01/2020 Africa Census Bos taurus Multi Rotor >1500g 1 - 2km2 16.21 60 20 N 

26/07/2018 Middle East Census Camelus dromedarius Fixed Wing >1500g 2 - 5 km2 21.43 80 26 N 

01/08/2018 Africa Census Nanger dama Fixed Wing >1500g > 5 km2 51.7 120 26 N 

30/06/2019 Africa Census Oryx dammah Fixed Wing >1500g 2 - 5 km2 27.31 120 26 N 

30/06/2019 Africa Census Oryx dammah Fixed Wing >1500g 2 - 5 km2 18.41 120 26 N 

30/07/2019 Africa Census 

Oryx dammah, Gazella 

dorcas Fixed Wing >1500g > 5 km2 31.45 120 26 N 

01/07/2019 Africa Census 

Oryx dammah, Gazella 

dorcas Fixed Wing >1500g > 5 km2 30.03 120 26 N 

01/07/2019 Africa Census 

Oryx dammah, Gazella 

dorcas Fixed Wing >1500g > 5 km2 45.22 120 26 N 

01/07/2019 Africa Census 

Oryx dammah, Gazella 

dorcas Fixed Wing >1500g > 5 km2 31.33 120 26 N 

01/07/2019 Africa Census 

Oryx dammah, Gazella 

dorcas Fixed Wing >1500g 1 - 2km2 16.19 120 26 N 

02/07/2019 Africa Census 

Oryx dammah, Gazella 

dorcas Fixed Wing >1500g 1 - 2km2 12.51 120 26 N 

02/07/2019 Africa Census 

Oryx dammah, Gazella 

dorcas Fixed Wing >1500g 2 - 5 km2 29.16 120 26 N 

02/07/2019 Africa Census 

Oryx dammah, Gazella 

dorcas Fixed Wing >1500g 2 - 5 km2 34.2 120 26 N 

02/07/2019 Africa Census 

Oryx dammah, Gazella 

dorcas Fixed Wing >1500g 2 - 5 km2 27.52 120 26 N 

03/07/2019 Africa Census 

Oryx dammah, Gazella 

dorcas Fixed Wing >1500g 2 - 5 km2 31.44 120 26 N 

03/07/2019 Africa Census 

Oryx dammah, Gazella 

dorcas Fixed Wing >1500g 2 - 5 km2 32.2 120 26 N 

03/07/2019 Africa Census 

Oryx dammah, Gazella 

dorcas Fixed Wing >1500g 2 - 5 km2 23.57 120 26 N 

28/01/2018 Middle East Census Oryx leucoryx Multi Rotor >1500g 1 - 2km2 12.38 75 16 N 

01/08/2018 Africa Census 

Camelus dromedarius, 

Gazella dorcas, Nanger 

dama Fixed Wing >1500g > 5 km2 36.38 120 26 N 

02/08/2018 Africa Census 

Camelus dromedarius, 

Gazella dorcas, Nanger 

dama Fixed Wing >1500g > 5 km2 52.01 120 26 N 

02/08/2018 Africa Census 

Camelus dromedarius, 

Gazella dorcas, Nanger 

dama Fixed Wing >1500g > 5 km2 37.16 120 26 N 
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02/08/2018 Africa Census 

Camelus dromedarius, 

Gazella dorcas, Nanger 

dama Fixed Wing >1500g > 5 km2 40.25 120 26 N 

02/08/2018 Africa Census 

Camelus dromedarius, 

Gazella dorcas, Nanger 

dama Fixed Wing >1500g > 5 km2 60.22 120 26 N 

02/08/2018 Africa Census 

Camelus dromedarius, 

Gazella dorcas, Nanger 

dama Fixed Wing >1500g > 5 km2 47.43 120 26 N 

04/08/2018 Africa Census 

Camelus dromedarius, 

Gazella dorcas, Nanger 

dama Fixed Wing >1500g > 5 km2 51.11 120 26 N 

04/08/2018 Africa Census 

Camelus dromedarius, 

Gazella dorcas, Nanger 

dama Fixed Wing >1500g > 5 km2 46.18 120 26 N 

04/08/2018 Africa Census 

Camelus dromedarius, 

Gazella dorcas, Nanger 

dama Fixed Wing >1500g > 5 km2 31.41 120 26 N 

04/08/2018 Africa Census 

Camelus dromedarius, 

Gazella dorcas, Nanger 

dama Fixed Wing >1500g > 5 km2 44.54 120 26 N 

07/08/2018 Africa Census 

Camelus dromedarius, 

Gazella dorcas Fixed Wing >1500g > 5 km2 44.58 120 26 N 

07/08/2018 Africa Census 

Camelus dromedarius, 

Gazella dorcas Fixed Wing >1500g > 5 km2 45.17 120 26 N 

07/08/2018 Africa Census 

Camelus dromedarius, 

Gazella dorcas Fixed Wing >1500g > 5 km2 44.36 120 26 N 

07/08/2018 Africa Census 

Camelus dromedarius, 

Gazella dorcas Fixed Wing >1500g > 5 km2 40.56 120 26 N 

08/08/2018 Africa Census 

Camelus dromedarius, 

Gazella dorcas Fixed Wing >1500g > 5 km2 55.32 120 26 N 

08/08/2018 Africa Census 

Camelus dromedarius, 

Gazella dorcas Fixed Wing >1500g > 5 km2 39.28 120 26 N 

08/08/2018 Africa Census 

Camelus dromedarius, 

Gazella dorcas Fixed Wing >1500g > 5 km2 45.55 120 26 N 

08/08/2018 Africa Census 

Camelus dromedarius, 

Gazella dorcas Fixed Wing >1500g > 5 km2 43.03 120 26 N 

08/08/2018 Africa Census 

Camelus dromedarius, 

Gazella dorcas Fixed Wing >1500g 2 - 5 km2 33.04 120 26 N 

28/01/2018 Middle East Targeted Oryx leucoryx Multi Rotor >1500g < 1km2 6.56 100 16 N 

09/12/2017 Africa Census 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g 2 - 5 km2 25.11 100 22 N 

09/12/2017 Africa Census 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g < 1km2 4.22 100 22 N 

09/12/2017 Africa Census 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g 2 - 5 km2 27.05 100 22 N 

09/12/2017 Africa Census 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g 1 - 2km2 24.5 100 22 N 
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09/12/2017 Africa Census 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g 1 - 2km2 14.18 100 22 N 

10/12/2017 Africa Census 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g 1 - 2km2 22.14 100 12 N 

10/12/2017 Africa Census 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g 1 - 2km2 17.39 100 12 N 

10/12/2017 Africa Census Ceratotherium simum Multi Rotor 1000g - 1500g 1 - 2km2 20.55 100 12 N 

12/12/2017 Africa Census 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g 1 - 2km2 18.31 100 20 N 

29/05/2019 Africa Census Oryx gazella Multi Rotor 1000g - 1500g 1 - 2km2 14.17 115 22 N 

08/06/2019 Africa Census Oryx gazella, Equus burchelli Multi Rotor 1000g - 1500g 1 - 2km2 17.2 120 22 N 

05/09/2016 Asia Census Sus barbatus Multi Rotor 1000g - 1500g 1 - 2km2 23.07 100 22 N 

05/09/2016 Asia Census Sus barbatus Multi Rotor 1000g - 1500g 1 - 2km2 17.19 100 22 N 

06/09/2016 Asia Census Sus barbatus Multi Rotor 1000g - 1500g 1 - 2km2 21.53 100 22 N 

06/09/2016 Asia Census Sus barbatus Multi Rotor 1000g - 1500g < 1km2 4.22 100 22 N 

07/09/2016 Asia Census Rusa unicolor Multi Rotor 1000g - 1500g 1 - 2km2 18.08 80 22 N 

07/09/2016 Asia Census Rusa unicolor Multi Rotor 1000g - 1500g < 1km2 7.11 50 22 N 

20/09/2016 Middle East Census Oryx leucoryx Multi Rotor 1000g - 1500g 1 - 2km2 13.36 110 20 N 

15/02/2017 Middle East Census Oryx leucoryx Multi Rotor 1000g - 1500g 1 - 2km2 20.22 100 20 N 

04/03/2017 Middle East Census 

Oryx leucoryx, Gazella 

marica Multi Rotor 1000g - 1500g 1 - 2km2 21.2 90 20 N 

28/05/2017 Middle East Census Oryx leucoryx Multi Rotor 1000g - 1500g 1 - 2km2 22.05 95 20 N 

28/05/2017 Middle East Census Oryx leucoryx Multi Rotor 1000g - 1500g 1 - 2km2 28.01 95 20 N 

04/10/2017 Middle East Census A Oryx, Mountain Gazelle Multi Rotor 1000g - 1500g 1 - 2km2 23.16 100 20 N 

13/11/2017 Middle East Census Oryx leucoryx Multi Rotor 1000g - 1500g 1 - 2km2 17.14 100 20 N 

10/01/2018 Middle East Census Oryx leucoryx Multi Rotor 1000g - 1500g 1 - 2km2 15.08 100 20 N 

11/01/2018 Middle East Census Oryx leucoryx Multi Rotor 1000g - 1500g 1 - 2km2 13.49 100 20 N 

04/03/2018 Middle East Census Oryx leucoryx Multi Rotor 1000g - 1500g 1 - 2km2 11.38 100 20 N 

04/03/2018 Middle East Census Oryx leucoryx Multi Rotor 1000g - 1500g < 1km2 2.58 90 20 N 

04/03/2018 Middle East Census Oryx leucoryx Multi Rotor 1000g - 1500g < 1km2 3.11 90 20 N 

04/03/2018 Middle East Census Oryx leucoryx Multi Rotor 1000g - 1500g < 1km2 3.24 90 20 N 

18/03/2018 Middle East Census Oryx leucoryx Multi Rotor 1000g - 1500g 1 - 2km2 18.06 95 20 N 

18/03/2018 Middle East Census Oryx leucoryx Multi Rotor 1000g - 1500g 1 - 2km2 10.25 75 20 N 

18/03/2018 Middle East Census Oryx leucoryx Multi Rotor 1000g - 1500g 1 - 2km2 12.36 75 20 N 

10/09/2018 Middle East Census 

Oryx leucoryx, Gazella 

marica Multi Rotor 1000g - 1500g 1 - 2km2 22.14 100 20 N 

11/09/2018 Middle East Census 

Oryx leucoryx, Gazella 

marica Multi Rotor 1000g - 1500g 1 - 2km2 13.42 100 20 N 
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14/10/2018 Middle East Census 

Oryx leucoryx, Gazella 

marica Multi Rotor 1000g - 1500g 1 - 2km2 22.58 95 20 N 

21/10/2018 Middle East Census 

Oryx leucoryx, Gazella 

marica Multi Rotor 1000g - 1500g 1 - 2km2 16.12 95 20 N 

04/11/2018 Middle East Census 

Oryx leucoryx, Gazella 

marica Multi Rotor 1000g - 1500g 1 - 2km2 22.45 100 20 N 

11/11/2018 Middle East Census Oryx leucoryx Multi Rotor 1000g - 1500g 1 - 2km2 13.2 95 20 N 

13/02/2019 Africa Census Nanger dama  Multi Rotor 250g - 1000g 1 - 2km2 20.02 100 23 N 

08/11/2021 Africa Census Nanger dama  Multi Rotor 250g - 1000g 1 - 2km2 21.08 100 23 N 

17/11/2020 Africa Census 

 Camelus dromedarius, 

Gazella dorcas, 

Phacochoerus africanus Multi Rotor 250g - 1000g 1 - 2km2 14.19 80 23 N 

17/11/2021 Africa Census 

 Camelus dromedarius, 

Gazella dorcas, 

Phacochoerus africanus Multi Rotor 250g - 1000g 1 - 2km2 16.44 90 23 N 

18/11/2022 Africa Census 

 Camelus dromedarius, 

Gazella dorcas, 

Phacochoerus africanus Multi Rotor 250g - 1000g 1 - 2km2 15.21 80 20 N 

18/11/2023 Africa Census 

 Camelus dromedarius, 

Gazella dorcas, 

Phacochoerus africanus Multi Rotor 250g - 1000g 1 - 2km2 20.47 100 22 N 

18/06/2020 Africa Targeted 

Oreotragus oreotragus,  

Philantomba monticola, 

Choeropsis liberiensis Multi Rotor >1500g 1 - 2km2 23.45 50 12 N 

12/12/2017 Africa Targeted 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g < 1km2 5.18 50 12 Y 

13/12/2017 Africa Targeted 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g < 1km2 6.25 75 12 N 

16/02/2018 Africa Targeted 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g < 1km2 1.04 50 10 N 

16/02/2018 Africa Targeted 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g < 1km2 3.28 50 5 Y 

17/02/2018 Africa Targeted ragelaphus scriptus  Multi Rotor 1000g - 1500g < 1km2 2.23 50 10 N 

17/02/2018 Africa Targeted Giraffa camelopardalis Multi Rotor 1000g - 1500g < 1km2 1.45 50 10 N 

18/02/2018 Africa Targeted 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g < 1km2 1.49 45 11 N 

18/02/2018 Africa Targeted 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g < 1km2 3.01 45 10 N 

18/02/2018 Africa Targeted 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g < 1km2 0.33 45 10 N 

18/02/2018 Africa Targeted 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g < 1km2 3.22 60 10 N 

18/02/2018 Africa Targeted 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g < 1km2 1.01 45 10 N 

18/02/2018 Africa Targeted 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g < 1km2 2 45 14 N 
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18/02/2018 Africa Targeted 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g < 1km2 9.21 60 16 N 

18/02/2018 Africa Targeted 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g < 1km2 0.54 60 18 N 

19/02/2018 Africa Targeted 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g < 1km2 7.28 60 16 N 

19/02/2018 Africa Targeted 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g < 1km2 1.42 60 14 N 

19/02/2018 Africa Targeted 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g < 1km2 1.11 50 16 Y 

19/02/2018 Africa Targeted 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g < 1km2 0.47 50 16 Y 

19/02/2018 Africa Targeted 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g < 1km2 1.42 50 16 Y 

19/02/2018 Africa Targeted 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g < 1km2 0.54 50 16 N 

19/02/2018 Africa Targeted 

Taurotragus derbianus 

derbianus Multi Rotor 1000g - 1500g < 1km2 1.11 50 12 N 

19/02/2018 Africa Targeted 

Taurotragus derbianus 

derbianus, Giraffa 

camelopardalis Multi Rotor 1000g - 1500g < 1km2 2.02 45 12 N 

04/03/2018 Middle East Targeted Oryx leucoryx Multi Rotor 1000g - 1500g < 1km2 6.18 50 8 N 

09/06/2018 Middle East Targeted Nanger dama  Multi Rotor 1000g - 1500g < 1km2 5.45 40 12 N 

10/06/2018 Middle East Targeted Nanger dama  Multi Rotor 1000g - 1500g < 1km2 6.54 60 12 N 

22/07/2018 Africa Census Nanger dama  Multi Rotor 250g - 1000g 1 - 2km2 15.17 60 15 Y 

22/07/2018 Africa Census Nanger dama  Multi Rotor 250g - 1000g 1 - 2km2 21.11 80 18 N 

11/03/2019 Africa Census Giraffa camelopardalis Multi Rotor 250g - 1000g 1 - 2km2 9.56 60 15 Y 

13/04/2019 Africa Census Giraffa camelopardalis Multi Rotor 250g - 1000g 1 - 2km2 14.32 80 15 Y 

03/08/2019 Africa Census Giraffa camelopardalis Multi Rotor 250g - 1000g 1 - 2km2 12.28 60 15 Y 

07/09/2019 Africa Census Nanger dama  Multi Rotor 250g - 1000g 1 - 2km2 20.45 100 23 N 

02/06/2021 Africa Census Addax nasomaculatus Multi Rotor 250g - 1000g < 1km2 6.05 60 15 Y 

15/03/2022 Africa Census Giraffa camelopardalis Multi Rotor 250g - 1000g 1 - 2km2 20.47 50 15 Y 

15/03/2022 Africa Census Giraffa camelopardalis Multi Rotor 250g - 1000g < 1km2 6.09 60 15 Y 

09/11/2021 Africa Census Nanger dama  Multi Rotor 250g - 1000g 1 - 2km2 12.19 60 15 Y 

12/11/2021 Africa Census Oryx dammah Multi Rotor 250g - 1000g 1 - 2km2 15.27 80 18 N 

13/11/2021 Africa Census Gazella dorcas Multi Rotor 250g - 1000g 1 - 2km2 19.47 60 18 Y 
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Appendix 2 Supplementary Table 2: Data extracted from the reviewed articles (n=36) 

 

Study ID Country Type UAV UAV_size Alt_MIN Alt_Max Speed_Max Launch Disturbance Ethical_considerations 

Hu 2020 Asia Census 

Fixed 

Wing >1500g 150 200 22.22 

 

N Not mentioned 

Linchant 

2015 Africa Census 

Fixed 

Wing >1500g 100 100 13.88 

  

Not mentioned 

Linchant 

2018 Africa Census 

Fixed 

Wing >1500g 20 140 13.88 

 

Y Not mentioned 

Mulero-

Pazmany 

2015 EU Census 

Fixed 

Wing >1500g 100 100 11 

 

N Not mentioned 

Basu 2019 Africa Other 

Multi 

Rotor 

1000g - 

1500g 

   

>50 m Y 

Multiple species 

considered 

deKock 

2021 

Middle 

East 

Feature 

extraction 

Multi 

Rotor 

1000g - 

1500g 100 100 15 

 

N 

Multiple species 

considered 

Fritsch 

2020 Africa Census 

Multi 

Rotor 

1000g - 

1500g 30 60 10 

 

Y 

Multiple species 

considered 

Fritsch 

2021 Africa Census 

Multi 

Rotor 

1000g - 

1500g 30 50 10 

  

Multiple species 

considered 

Hartmann 

2021 Africa Census 

Multi 

Rotor 

250g - 

1000g 35 100 6 >50m Y 

Multiple species 

considered 

Hirata 2022 EU Behavior 

Multi 

Rotor 

250g - 

1000g 180 

    

Not mentioned 

Inoue 2019 EU Behavior 

Multi 

Rotor 

1000g - 

1500g 25 80 10 > 50 m 

 

Not mentioned 

Liang 2020 Asia Census 

Multi 

Rotor 

1000g - 

1500g 10 50 

  

N Not mentioned 

Maeda 

2021 EU Behavior 

Multi 

Rotor 

250g - 

1000g 30 50 

   

Not mentioned 

Maeda 

2021 EU Behavior 

Multi 

Rotor 

250g - 

1000g 30 50 

   

Not mentioned 

Mendonca 

2021 EU Behavior 

Multi 

Rotor 

1000g - 

1500g 30 90 

 

>10 m N Not mentioned 

Petso 2021 Africa Census 

Multi 

Rotor 

1000g - 

1500g 15 130 

  

N 

Species of interst 

only 

Schiffman 

2014 Africa Other 

Multi 

Rotor 

1000g - 

1500g 

     

Species of interst 

only 

Schroeder 

2021 Other Behavior 

Multi 

Rotor 

1000g - 

1500g 60 200 10 >100m Y 

Species of interst 

only 

Bennitt 

2019 Africa Behavior VTOL >1500g 10 120 6.5 >100 Y 

Multiple species 

considered 
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Mulero-

Pazmany 

2014 Africa Other 

Fixed 

Wing >1500g 100 180 

  

N Not mentioned 

Cukor 2019 EU Census 

Multi 

Rotor >1500g 25 120 6 

  

Multiple species 

considered 

Kim 2021 Asia Census 

Multi 

Rotor >1500g 

     

Not mentioned 

McMahon 

2021 USA Census 

Multi 

Rotor >1500g 71 122 

 

>100m N Not mentioned 

Obermoller 

2021 USA Other 

Multi 

Rotor >1500g 45 60 9 

 

Y 

Species of interst 

only 

Preston 

2021 USA Census 

Multi 

Rotor 

1000g - 

1500g 90 90 9 

 

N 

Species of interst 

only 

Rahman 

2021 Asia Census 

Multi 

Rotor >1500g 

     

Not mentioned 

Zhou 2021 USA Census 

Multi 

Rotor >1500g 60 60 9.7 

 

N 

Species of interst 

only 

Chretien 

2016 Canada Census VTOL >1500g 55 60 6.11 

  

Multiple species 

considered 

Beaver 

2020 USA Census 

Fixed 

Wing >1500g 96.5 102.5 21 >50m 

 

Multiple species 

considered 

Lhoest 

2015 Africa Census 

Fixed 

Wing >1500g 38 155 

   

Not mentioned 

Witczuk 

2018 EU Census 

Fixed 

Wing >1500g 149 150 20 

 

N 

Species of interst 

only 

Iwanoto 

2020 Asia Behavior 

Multi 

Rotor >1500g 50 50 

  

N Not mentioned 

Takehiko 

2022 Asia 

Feature 

extraction 

Multi 

Rotor >1500g 40 120 

  

N Not mentioned 

Schroeder 

2021 Other Behavior 

Multi 

Rotor 

1000g - 

1500g 60 180 10 >100m Y 

Species of interst 

only 

Hahn 2016 Africa Other 

Multi 

Rotor 

1000g - 

1500g 

    

N 

Multiple species 

considered 

Roberts 

2020 EU Census 

Fixed 

Wing >1500g 100 100 18 

  

Multiple species 

considered 
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Appendix 3 Supplementary Table 3: The digital zoometric measurement results of the O. 

  leucoryx study herd. 

 

ID Sex Transponder No. DoB DoP Months D_Print (cm2) TotalLength Width (cm) Kg 

85 female 00061F6770 14/07/2000 01/11/2017 207.75 3480.49 146.64 38.95 80.5 

485 female 000621473B 11/04/2002 01/11/2017 186.84 3171.39 139.2 39.44 95.3 

486 female 00061F605F 21/04/2002 01/11/2017 186.51 3068.98 130.56 41.58 101.7 

547 female 00065DE1C1 01/09/2002 30/10/2017 182.07 3177.86 127.13 38.26 104.1 

552 female 6136693 16/01/2003 01/11/2017 177.63 2745.75 121.41 39.39 86.8 

643 female 00062155AF 09/03/2004 01/11/2017 163.89 3355.43 142.5 39.42 91.5 

672 female 00062163C8 30/11/2003 01/11/2017 167.18 3232.55 144.45 42.04 92.9 

726 female 000621440C 26/08/2004 01/11/2017 158.30 2969.16 130.53 39.44 91.2 

1026 female 0006678F97 30/11/2005 01/11/2017 143.15 3283.63 127.83 41.15 95.5 

1055 female 00066EE227D 01/02/2006 30/10/2017 141.01 2456.49 117.85 31.1 93 

1093 female 0006696FD7 12/07/2006 01/11/2017 135.78 2693.77 126.17 36.44 91 

1173 female 00066DC76E 26/12/2006 30/10/2017 130.22 2496.85 117.3 39.92 92.1 

1177 female 00066DFDAB 11/04/2007 30/10/2017 126.74 2497.71 113.58 35.21 93.9 

1270 female 00066E13EE 02/01/2007 30/10/2017 129.99 2832.12 129.87 35.62 86.2 

1294 female 00066DE916 24/02/2008 30/10/2017 116.25 3012.25 128.11 38.84 93.2 

1342 female 0006CA1339 11/09/2008 30/10/2017 109.68 2712.21 118.26 37.86 93 

1344 female 0006CE4379 28/09/2008 30/10/2017 109.12 2717.1 128.03 35.15 90.5 

1367 female 0006CA00B3 28/10/2008 30/10/2017 108.13 3369.63 138.89 37.26 92.7 

1387 female 0006C9E79F 26/11/2008 01/11/2017 107.24 3008.35 130.16 37.28 85.3 

1436 female 0006C9FA7D 25/11/2008 01/11/2017 107.28 3725.31 143.87 47.4 95 

1473 female 0006CA07C4 20/06/2009 30/10/2017 100.41 2450 126.01 33.67 82.5 

1481 female 0006CE2660 24/08/2008 30/10/2017 110.27 2766.63 126.23 37.05 91.1 

1490 female 0006C9EAC8 26/07/2009 30/10/2017 99.22 2730.07 104.28 40.95 101.7 

1506 female 0006C9E7D9 03/08/2009 01/11/2017 99.02 3458.12 134.85 41.18 106.1 

1647 female 0006CA10D4 19/12/2009 30/10/2017 94.42 2100.01 113.8 33 82.1 

1649 female 0006C9DB85 27/12/2009 30/10/2017 94.16 2561 126.25 37.82 97.3 

1657 female 0006CA0CC2 14/01/2010 30/10/2017 93.57 2695 127.63 40.54 86.7 

1912 female 0006CA01E2 28/04/2010 30/10/2017 90.15 2449.14 117.45 34.89 85.4 

1915 female 000706D128 17/04/2010 30/10/2017 90.51 2452.56 111.17 35.35 84.9 
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1921 female 0006CE37D0 24/03/2010 30/10/2017 91.30 2665.1 127 35.7 90.2 

1922 female 0006CE3E2D 22/03/2010 30/10/2017 91.36 2598.22 126.27 37.8 94.4 

1964 female 956000001834132 20/11/2010 30/10/2017 83.38 2574.62 124.92 36.69 85.4 

2007 female 0006CA116C 18/01/2011 30/10/2017 81.44 2805.65 120.75 35.78 85.5 

2189 female 956000001824626 24/01/2011 30/10/2017 81.24 2676.25 125.29 37.83 98.2 

2197 female 000708C08B 01/03/2011 30/10/2017 80.05 2595.9 111.97 37.85 90.9 

2205 female 000708836F 19/12/2011 30/10/2017 70.42 2973.67 121.4 41.35 95.8 

2222 female 000708B105 22/12/2011 30/10/2017 70.32 3185 129.45 42.02 107.3 

2223 female 00070B4FA7 23/12/2011 30/10/2017 70.29 3199.17 136.01 42 101.7 

2226 female 70883000000 17/01/2012 30/10/2017 69.47 2474.3 111.97 36.9 83.7 

2230 female 0007074402 05/02/2012 30/10/2017 68.84 2682.91 122.95 38.47 83.6 

2240 female 000708EC4A 11/04/2012 30/10/2017 66.67 2149.61 110 32.25 71.9 

2262 female 00075B16E1 17/01/2012 01/11/2017 69.53 2762.04 107.87 40.95 91.3 

2264 female 00070B75B0 08/10/2011 01/11/2017 72.85 2865.09 133.73 40.68 75.7 

2267 female 0007088B7D 28/10/2011 01/11/2017 72.20 2450.19 113.45 35.69 78.9 

2375 female 000708859F 22/06/2012 01/11/2017 64.37 2917.79 124.11 40.25 87.3 

2390 female 000708B4B6 22/06/2012 01/11/2017 64.37 3570.23 150.12 41.47 85.3 

2392 female 000708B87F 05/07/2012 01/11/2017 63.95 3225.12 130.81 43.94 106.6 

2409 male 00070B180D 26/11/2012 30/10/2017 59.15 3377.25 137.59 39.25 114.6 

2421 male 000708D906 01/01/2012 01/11/2017 70.06 2200.25 122.24 27.89 80.8 

2456 female 000708D64F 06/02/2012 01/11/2017 68.88 3111.47 136.12 40.24 98 

2466 female 00075B52FB 17/04/2013 01/11/2017 54.54 2351.7 120.39 34.43 90.9 

2475 female 000708E4D2 18/01/2013 30/10/2017 57.40 2797.99 124.49 39.45 100.1 

2483 female 00070890C3 16/02/2013 30/10/2017 56.45 2891.63 124.9 39.54 91.8 

2776 female 00066C748C 07/01/2013 01/11/2017 57.83 3373.04 145.91 38.08 89.9 

2847 female 000708CAC7 26/01/2014 30/10/2017 45.14 2338.76 112.36 38.52 75.2 

3633 female 00075CC5E0 25/08/2016 30/10/2017 14.17 1895.72 110.6 27.86 58.1 

3634 female 00075B44E4 25/08/2016 30/10/2017 14.17 2196.18 116.39 31.9 62.7 

3635 male 00075B0DF8 24/08/2016 30/10/2017 14.20 2667.96 121.52 33.54 71.7 

3641 female 00075CF5F2 16/08/2016 01/11/2017 14.53 1952.37 109.51 28.35 70.1 

3643 female 00075D1C33 17/08/2016 01/11/2017 14.50 2655.64 127.09 34.14 67.3 

3646 female 000708CAB6 22/08/2016 01/11/2017 14.33 2794.99 136.39 36.85 64.9 

3650 female 00075B538C 30/08/2016 01/11/2017 14.07 2182.44 109.58 32.54 61.5 
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3651 male 00075D1DD6 30/08/2016 01/11/2017 14.07 2222.36 116.46 29.07 61.8 

3652 female 00075D7D8D 09/09/2016 01/11/2017 13.74 1937.98 104.47 28.1 63.8 

3654 male 00075B3BBF 11/09/2016 01/11/2017 13.68 2017.97 111.91 27.94 66.9 

3658 male 00075CB347 05/09/2016 30/10/2017 13.81 1946.79 112.25 29.8 62.2 

3659 male 00075B4D92 05/09/2016 30/10/2017 13.81 2234.81 116.6 31.96 67 

3663 female 00075CC428 05/09/2016 30/10/2017 13.81 2180.76 118.93 33.58 64 

3665 female 00075B4E24 06/09/2016 30/10/2017 13.78 2340.23 110.31 34.28 62.1 

3666 male 0007074562 14/09/2016 30/10/2017 13.51 2159.62 105.61 29.2 62.3 

3667 male 000706B20F 14/09/2016 30/10/2017 13.51 1572.79 100.45 25.21 65.6 

3669 male 00075C79FA 14/09/2016 01/11/2017 13.58 2520.11 123.76 31.66 64 

3674 female 000708C3E4 24/09/2016 30/10/2017 13.18 1813.13 99.23 28.13 52.4 

3676 male 000708B878 28/09/2016 30/10/2017 13.05 1519.74 85.66 27.67 50.8 

3677 male 00070743FC 01/10/2016 30/10/2017 12.95 2122 115.14 29.83 56.5 

3683 male 00070B51DD 08/09/2016 30/10/2017 13.71 2060.87 108.34 32.34 63.4 

3685 female 00075CD991 14/09/2016 01/11/2017 13.58 2292.41 114.81 32.76 60.5 

3686 female 000708E5F1 10/09/2016 30/10/2017 13.64 1749.14 102.38 26.8 53.6 

3687 male 000706B1F5 12/09/2016 30/10/2017 13.58 2140.37 107.44 31.3 60.4 

3688 male 0007089CE1 02/01/2017 30/10/2017 9.90 2000.87 102 32.93 55.5 

3695 female 000708D107 04/11/2016 30/10/2017 11.84 1637.05 105.53 27.61 45.4 

3697 male 0007073738 05/11/2016 30/10/2017 11.80 1592.54 82.09 29.48 53.2 

3699 female 000708EBD7 14/11/2016 30/10/2017 11.51 2259.93 122 31.68 60.7 

3703 female 000708BDC3 29/11/2016 30/10/2017 11.01 2195.6 110.31 30.3 50.8 

3704 male 00070B18E6 02/12/2016 30/10/2017 10.92 1767.2 102.92 29.67 52.1 

3706 male 000708DDF5 03/12/2016 30/10/2017 10.88 1551.54 98.02 28.04 49.3 

3714 female 0007089F2D 09/12/2016 30/10/2017 10.68 2270 120.93 33.7 55.9 

3715 female 000706AEEC 11/12/2016 30/10/2017 10.62 1946.82 107.52 30.02 57.1 

3719 male 000708EC3B 21/12/2016 30/10/2017 10.29 1914.66 98.35 28.3 55.6 

3737 male 00070B41AA 02/01/2017 30/10/2017 9.90 2003.91 115.72 29.42 53 

3750 female 00075B4FCF 05/11/2016 01/11/2017 11.87 1782.56 100.59 28.31 58.7 

3751 male 0007088005 09/01/2017 30/10/2017 9.67 1591.62 99.255 27.34 47.7 

3760 male 00075CC87D 07/02/2017 30/10/2017 8.71 1829.98 104.45 29.01 54 

3768 female 00075D0C1B 13/11/2016 01/11/2017 11.61 2684.44 126.21 32.22 55.4 

3769 male 00075B07DC 13/11/2016 01/11/2017 11.61 2087.83 113.61 30.21 52.8 
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3775 female 00075B0B96 27/02/2017 01/11/2017 8.12 1927.54 108.33 28.73 52.7 

3778 male 00075B12E5 27/02/2017 30/10/2017 8.05 1389.24 87.61 26.98 36.4 

3896 female 00075D239D 25/03/2017 30/10/2017 7.20 1486.11 95.74 26.85 39 

3908 male 00075CCB89 22/03/2017 30/10/2017 7.30 1445.07 92.31 25.54 38.7 

3909 female 0007087000 22/05/2017 30/10/2017 5.29 1200.87 82.83 23.57 34.8 

3910 female 00070B1F66 30/05/2017 30/10/2017 5.03 1205.64 83.46 23.46 27.9 

3911 female 0007087DA1 31/05/2017 30/10/2017 5.00 1236.34 80.77 22.69 31.7 

3913 female 00075CC826 05/01/2017 30/10/2017 9.80 1199.83 86.7 22.81 33.4 

3917 female 00075CC96D 12/01/2017 30/10/2017 9.57 1068.91 79.83 21.14 27.3 

3930 male 00075B5B83 17/06/2017 30/10/2017 4.44 15982.39 96.42 23.97 32.6 

3937 female 000708C01B 15/01/2017 01/11/2017 9.53 1542.07 103.85 24.39 31.5 

3939 male 000708C524 17/06/2017 01/11/2017 4.50 1242.61 74.3 25.57 27.4 

3940 female 00070B5058 18/01/2017 01/11/2017 9.44 1256.94 89.04 22.23 31.2 

3942 male 00070B2274 25/01/2017 01/11/2017 9.21 1358.36 91.3 23.54 28.6 

3943 male 000707358E 26/06/2017 01/11/2017 4.21 1532.52 87.28 25.62 25.6 

3944 female 000707395B 27/06/2017 01/11/2017 4.18 1128.72 84.22 20.39 29.4 

3950 male 00075CCD29 02/07/2017 30/10/2017 3.95 1706.65 100.71 28.59 30 

3952 male 00075CF88B 05/07/2017 30/10/2017 3.85 1078.52 78.12 19.4 28.8 

3955 female 00075B0CBF 10/07/2017 30/10/2017 3.68 915.05 70.86 18.78 26.2 

3962 male 00075CC23D 26/07/2017 30/10/2017 3.16 1026.81 78.35 17.28 23.7 

3967 male 00075B38E0 03/09/2017 30/10/2017 1.87 1052 77.44 19.02 16.4 

3969 male 00075CC94C 15/08/2017 30/10/2017 2.50 1018.96 75.73 18.12 24.1 

3971 female 000708AA5C 05/07/2017 01/11/2017 3.91 1733.9 103.19 26.16 35.1 

3972 female 000708CD58 07/07/2017 01/11/2017 3.85 1049.35 72.06 15.5 25.9 

3974 female 000708A40C 13/08/2017 01/11/2017 2.63 1549.19 104.12 24.75 26.7 

3982 female 000708EFC9 03/09/2017 01/11/2017 1.94 1273.27 103.71 28.52 16 

4012 female 000706B294 30/09/2017 01/11/2017 1.05 586.35 60.54 12.2 10.2 
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Appendix 4 R-markdown file: UAV_based_Ungulate_monitoring 
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Appendix 5 R-markdown file A_Oryx_weight_predictor 
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Appendix 6 R-markdown file: A_ORYX_S_DronePrint_pregnancy_predictor 

 

 

  



 

97 
 

 

 

 

 



 

98 
 

 

  



 

99 
 

Appendix 7 R-markdown file: A_Oryx_Sex_predicton 
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Appendix 8  R-markdown file: A_Oryx_Pregnacy_predictor_decision_tree
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Appendix 9  R-markdown file: S
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